Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T16:02:46.756Z Has data issue: false hasContentIssue false

Observation of Fine Distribution of Minor Dopants in an Erbium-Doped Fiber Core using a Sample Thinning Technique for Field Emission Electron Probe Microanalysis

Published online by Cambridge University Press:  17 November 2015

Yugo Kubo*
Affiliation:
Analysis Technology Research Center, Sumitomo Electric Industries, Ltd. 1–1–3, Shimaya, Konohana–ku Osaka–shi, Osaka 554–0024, Japan
Koji Kuramochi
Affiliation:
Analysis Technology Research Center, Sumitomo Electric Industries, Ltd. 1–1–3, Shimaya, Konohana–ku Osaka–shi, Osaka 554–0024, Japan
*
*Corresponding author. kubo-yugo@sei.co.jp
Get access

Abstract

To observe the fine distribution of minor aluminum and germanium dopants in the erbium-doped fiber (EDF) core of an optical amplifier, a sample thinning technique was applied for field emission electron probe microanalysis (FE-EPMA) together with wavelength-dispersive X-ray spectrometry. This technique significantly improved the spatial resolution without much degradation of the minimum detection limit for FE-EPMA. As such, this enabled us to observe the distribution of minor dopants in EDF. Moreover, we propose a very simple sample preparation to prevent electron-beam radiation damage, a problem involved with FE-EPMA of low-conductivity materials such as SiO2 glass, which is the main component of EDF.

Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, D. & Nissen, J. (2014). Measurement and Monte Carlo simulation of the spatial resolution in element analysis with the FEG-EPMA JEOL JXA-8530F. IOP Conf Ser Mater Sci Eng 55, 012002.CrossRefGoogle Scholar
Brugger, K. (1971). Effect of thermal stress on refractive index in clad fibers. Appl Opt 10, 437438.Google Scholar
Cao, C.K. (1982). Optical Fiber Systems: Technology, Design, and Applications. New York, USA: McGraw–Hill.Google Scholar
Castaing, R. (1960). Electron probe microanalysis. Adv Electron Electron Phys 13, 317386.Google Scholar
Duncumb, P. & Shields, P.K. (1963). The present state of quantitative X-ray microanalysis part 1: Physical basis. Br J Appl Phys 14, 617625.CrossRefGoogle Scholar
French, W.G., Pearson, A.D., Tasker, G.W. & Macchesney, J.B. (1973). Low-loss fused silica optical waveguide with borosilicate cladding. Appl Phys Lett 23, 338339.Google Scholar
Goldstein, J.I., Heren, J.I. & Joy, D.C. (1979). Introduction to Analytical Electron Microscopy. New York, USA: Plenum Publishing Corporation.Google Scholar
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Romig, A.D. Jr., Lyman, C.E., Fiori, C. & Lifshin, E. (1992). Scanning Electron Microscopy and X-Ray Microanalysis, 2nd ed. New York, USA: Plenum Press.Google Scholar
Haruna, T., Iihara, J., Yamaguchi, K., Saito, Y., Ishikawa, S., Onishi, M. & Murata, T. (2006). Local structure analyses around Er3+ in Er-doped fiber with Al co-doping. Opt Expr 14, 1103611042.Google Scholar
Hashimoto, T., Nagatomi, T. & Kimura, T. (2005). Questionnaire survey for EPMA and EDS analyses at actual laboratories. J Surf Anal 12, 405412.Google Scholar
Hovington, P., Drouin, D. & Gauvin, R. (1997). CASINO: A new Monte Carlo code in C language for electron beam interaction—Part I: Description of the program. Scanning 19, 114.CrossRefGoogle Scholar
Jenkins, R., Gould, R.W. & Gedcke, D. (1981). Quantitative X–Ray Spectrometry. New York, USA: Marcel Dekker, Inc.Google Scholar
Kamino, T., Yaguchi, T., Hashimoto, T., Ohnishi, T. & Uemura, K. (2005). A FIB micro-sampling technique and a site specific TEM specimen preparation method. In Introduction to Focused Ion Beam: Instrumentation, Theory, Techniques and Practice , Giannuzzi, L.A. & Stevie, F.A. (Eds.), pp. 229245. New York, NY, USA: Springer.CrossRefGoogle Scholar
Kanaya, K. & Okayama, S. (1972). Penetration and energy-loss theory of electrons in solid targets. J Phys D Appl Phys 5, 4358.Google Scholar
Kimura, T., Nishida, K. & Tanuma, S. (2003). Development of submicron analysis wavelength dispersive (WDS) EPMA with a field emission type electron gun. J Surf Anal 10, 203211.Google Scholar
Kimura, T., Nishida, K. & Tanuma, S. (2006). Spatial resolution of a wavelength-dispersive electron probe microanalyzer equipped with a thermal field emission gun. Microchim Acta 155, 175178.Google Scholar
Kubo, Y. & Hamada, K. (2015). Combination of high spatial resolution and low minimum detection limit using thinned specimens in cutting-edge electron probe microanalysis. Ultramicroscopy 157, 4856.Google Scholar
Kubo, Y., Hamada, K. & Urano, A. (2013). Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis. Ultramicroscopy 135, 6470.CrossRefGoogle ScholarPubMed
Lorimer, G.W., Cliff, G. & Clark, J.N. (1975). Determination of the thickness and spatial resolution for the quantitative analysis of thin foils. In Developments in Electron Microscopy and Analysis, Vanables, J.A. (Ed.), pp. 153156. London: Academic Press.Google Scholar
Namae, T. (1975). A method of quantitative analysis for thin specimens by energy dispersive spectrometer fitted to transmission electron microscope. J Electron Microsc 24, 16.Google Scholar
Reed, S.J.B. (1993). Electron Microprobe Analysis, 2nd ed. Cambridge, UK: Cambridge University Press.Google Scholar
Rinaldi, R. & Llovet, X. (2015). Electron probe microanalysis: A review of the past, present, and future. Microsc Microanal 21, 10531069.Google Scholar
Soejima, H. (1979). Spatial resolving power of electron probe X-ray microanalyzer. PhD Dissertation. University of Osaka, Osaka, Japan.Google Scholar
Takahashi, H. (2004). Specimen damage in EPMA/SEM. Hyomen Kagaku 24, 224231.CrossRefGoogle Scholar
Weast, R.C. (1967). CRC Handbook of Chemistry and Physics, 48th ed. Cleveland, USA: The Chemical Rubber Company.Google Scholar
Yoshida, S., Kuwano, S. & Iwashita, K. (1995). Gain-flattened EDFA with high Al concentration for multistage repeated WDM transmission systems. Electron Lett 31, 17651767.Google Scholar