Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T21:38:30.570Z Has data issue: false hasContentIssue false

On the Field Evaporation Behavior of Dielectric Materials in Three-Dimensional Atom Probe: A Numeric Simulation

Published online by Cambridge University Press:  01 October 2010

Christian Oberdorfer*
Affiliation:
Institute of Materials Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
Guido Schmitz
Affiliation:
Institute of Materials Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
*
Corresponding author. E-mail: oberdorc@uni-muenster.de
Get access

Abstract

As a major improvement in three-dimensional (3D) atom probe, the range of applicable material classes has recently been broadened by the establishment of laser-assisted atom probes (LA-3DAP). Meanwhile, measurements of materials of low conductivity, such as dielectrics, ceramics, and semiconductors, have widely been demonstrated. However, besides different evaporation probabilities, heterogeneous dielectric properties are expected to give rise to additional artifacts in the 3D volume reconstruction on which the method is based. In this article, these conceivable artifacts are discussed based on a numeric simulation of the field evaporation. Sample tips of layer- or precipitate-type geometry are considered. It is demonstrated that dielectric materials tend to behave similarly to metals of reduced critical evaporation field.

Type
Atom Probe Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Kassab, T., Wollenberger, H., Schmitz, G. & Kirchheim, R. (2003). Tomography by atom probe field ion microscopy. In High Resolution Imaging and Spectrometry of Materials, Ernst, F. & Rühle, R. (Eds.), pp. 270319. Berlin, Heidelberg, New York: Springer Verlag.Google Scholar
Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87, 298304.CrossRefGoogle Scholar
Birey, H. (1978). Dielectric properties of aluminum oxide films. J Appl Phys 49, 28982904.CrossRefGoogle Scholar
Boll, T., Al-Kassab, T., Yuan, Y. & Liu, Z.G. (2007). Investigation of the site occupation of atoms in pure and doped TiAl/Ti3Al intermetallic. Ultramicroscopy 107, 796801.CrossRefGoogle ScholarPubMed
Cash, J.R. & Karp, A.H. (1990). A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans Math Software 16, 202222.CrossRefGoogle Scholar
Chen, Y.M., Ohkubo, T., Kodzuka, M., Morita, K. & Hono, K. (2009). Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scr Mater 61, 693696.CrossRefGoogle Scholar
De Geuser, F., Lefebvre, W., Danoix, F., Vurpillot, F., Forbord, B. & Blavette, D. (2006). An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf Interf Anal 39, 268272.CrossRefGoogle Scholar
Gault, B., Menand, A., De Geuser, F. & Deconihout, B. (2006). Investigation of an oxide layer by femtosecond-laser-assisted atom probe tomography. Appl Phys Lett 88, 114101.CrossRefGoogle Scholar
Humphries, S. Jr. (1998). Field Solutions on Computers. Boca Raton, FL: CRC Press LLC.Google Scholar
Jeske, T. & Schmitz, G. (2001). Nanoscale analysis of the early interreaction stages in Al/Ni. Scr Mater 45, 555560.CrossRefGoogle Scholar
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 031101.CrossRefGoogle ScholarPubMed
Kluthe, C., Al-Kassab, T. & Kirchheim, R. (2003). Early stages of oxide precipitation in Ag-O-0.42at.%-Mg examined with tomographic atom probe. Mater Sci Eng A353, 112118.CrossRefGoogle Scholar
Kuduz, M., Schmitz, G. & Kirchheim, R. (2004). Investigation of oxide tunnel barriers by atom probe tomography (TAP). Ultramicroscopy 101, 197205.CrossRefGoogle ScholarPubMed
Li, W., McKenzie, D.R., McFall, W.D., Zhang, Q. & Wiszniewski, W. (2000). Breakdown mechanism of Al2O3 based metal-to-metal antifuses. Solid-State Electron 44, 15571562.CrossRefGoogle Scholar
Marquis, E.A. (2008). Core/shell structures of oxygen-rich nanofeatures in oxide-dispersion strengthened Fe-Cr alloys. Appl Phys Lett 93, 181904.CrossRefGoogle Scholar
Marquis, E.A. & Vurpillot, F. (2008). Chromatic aberrations in the field evaporation behavior of small precipitates. Microsc Microanal 14, 561570.CrossRefGoogle ScholarPubMed
Massalski, T.B. (1990). Binary Alloy Phase Diagrams. Russell Township, Ohio: American Society for Metals.Google Scholar
Oberdorfer, C., Stender, P., Reinke, C. & Schmitz, G. (2007). Laser-assisted atom probe tomography of oxide materials. Microsc Microanal 13, 342346.CrossRefGoogle ScholarPubMed
Rao, K.V. & Smakula, A. (1965). Dielectric properties of cobalt oxide, nickel oxide and their mixed crystals. J Appl Phys 36, 20312038.CrossRefGoogle Scholar
Schlesiger, R., Oberdorfer, C., Würz, R., Greiwe, G., Stender, P., Artmeier, M., Pelka, P., Spaleck, F. & Schmitz, G. (2010). Design of a laser-assisted tomographic atom probe at Münster University. Rev Sci Instrum 81, 043709.CrossRefGoogle ScholarPubMed
Schmitz, G. (2009). Nanoanalysis by atom probe tomography. In Nanotechnology, 6: Nanoprobes, Fuchs, H. (Ed.), pp. 213257. Weinheim Germany: Wiley-VCH.Google Scholar
Stöcker, H. (2000). Taschenbuch der Physik. Thun und Frankfurt am Main, Germany: Verlag Harri Deutsch.Google Scholar
Tsong, T.T. (1990). Atom-Probe Field Ion Microscopy. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2000a). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76, 31273129.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A., Cadel, A. & Blavette, D. (2000b). The spatial resolution of 3D atom probe in the investigation of single-phase materials. Ultramicroscopy 84, 213224.CrossRefGoogle ScholarPubMed
Vurpillot, F., Bostel, A., Menand, A. & Blavette, D. (1999). Trajectories of field emitted ions in 3D atom-probe. Eur J Phys 6, 217221.Google Scholar
Vurpillot, F., Cerezo, A., Blavette, D. & Larson, D.J. (2004). Modeling image distortions in 3DAP. Microsc Microanal 10, 384390.CrossRefGoogle ScholarPubMed