Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T16:54:33.140Z Has data issue: false hasContentIssue false

Osmium Tetroxide Labeling of (Poly)Methyl Methacrylate Corrosion Casts for Enhancement of Micro-CT Microvascular Imaging

Published online by Cambridge University Press:  08 October 2013

William L. Mondy*
Affiliation:
Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX 77030, USA Department of Natural Sciences and Mathematics, Claflin University, Orangeburg, SC 29115, USA Department of Bioengineering, Rice University, Houston, TX 77030, USA
Christophe Casteleyn
Affiliation:
Laboratory for Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
Denis V. Loo
Affiliation:
UGCT, Department of Physics and Astronomy, Ghent University, Ghent, Belgium
Muthkrishna Raja
Affiliation:
Department of Chemistry, Claflin University, Orangeburg, SC 29115, USA
Christopher Singleton
Affiliation:
Department of Natural Sciences and Mathematics, Claflin University, Orangeburg, SC 29115, USA
Jeffrey G. Jacot
Affiliation:
Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX 77030, USA Department of Bioengineering, Rice University, Houston, TX 77030, USA
*
*Corresponding author. E-mail: wmondy@gmail.com
Get access

Abstract

In order to enhance micro-computer tomography (micro-CT) imaging of corrosion casts of fine vasculature, metals can be added to the casting resin before perfusion. However, perfused metals lead to vasoconstriction or vessel damage resulting in nonphysiologic vascular casts. A novel method for coating methyl methacrylate vascular casts with osmium tetroxide has been developed in order to increase micro-CT contrast without affecting the vascular structure. This technique was verified using corrosion casts of the lung vasculature of New Zealand white rabbits. Osmium tetroxide coating of methyl methacrylate vascular corrosion casts resulted in an increase in overall sample contrast that translated into an increase in the resolution of the vasculature. This method can therefore lead to increased resolution in the characterization of fine vascular structures.

Type
Biomedical and Biological Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharinejad, S. & Bock, P. (1993). Mercox-methylmethacrylic acid mixture penetrates into cells. A scanning and transmission electron microscopic study. Scanning Microsc 7(1), 295303; discussion 303–304. Google Scholar
Almajdub, M., Magnier, L., Juillard, L. & Janier, M. (2008). Kidney volume quantification using contrast-enhanced in vivo X-ray micro-CT in mice. Contrast Media Mol Imaging 3(3), 120126.CrossRefGoogle ScholarPubMed
Ananda, S., Marsden, V., Vekemans, K., Korkmaz, E., Tsafnat, N., Soon, L., Jones, A. & Braet, F. (2006). The visualization of hepatic vasculature by X-ray micro-computed tomography. J Electron Microsc 55(3), 151155.CrossRefGoogle ScholarPubMed
Batson, O.V. (1935). A new material for corrosion preparations. Science 81(2108), 519520.Google Scholar
Bereza, T., Tomaszewski, K.A., Bałajewicz-Nowak, M., Mizia, E., Pasternak, A. & Walocha, J. (2012a). The vascular architecture of the supravaginal and vaginal parts of the human uterine cervix: A study using corrosion casting and scanning electron microscopy. J Anat 221(4), 352357.CrossRefGoogle ScholarPubMed
Bereza, T., Tomaszewski, K.A., Walocha, J., Mizia, E., Bachul, P. & Chmielewski, P. (2012b). Vascular architecture of the human uterine cervix, as assessed in light- and scanning electron microscopy. Folia Morphol (Warsz) 71(3), 142147.Google Scholar
Bonakdarpour, A., Lynch, P.R. & Truex, R.C. (1967). Comparative angiographic and corrosion cast studies of the cervicocerebral arteries in the dog. Invest Radiol 2(4), 290303.CrossRefGoogle ScholarPubMed
Cainelli, G., Contento, M., Manescalchi, F. & Plessi, L. (2002). Catalytic hydroxylation of olefins by polymer-bound osmium tetroxide. Synthesis 1989(1), 4547.CrossRefGoogle Scholar
Casteleyn, C., Trachet, B., Van Loo, D., Devos, D.G., Van den Broeck, W., Simoens, P. & Cornillie, P. (2010). Validation of the murine aortic arch as a model to study human vascular diseases. J Anat 216(5), 563571.CrossRefGoogle Scholar
Debbaut, C., Monbaliu, D., Casteleyn, C., Cornillie, P., Van Loo, D., Masschaele, B., Pirenne, J., Simoens, P., Van Hoorebeke, L. & Segers, P. (2011). From vascular corrosion cast to electrical analog model for the study of human liver hemodynamics and perfusion. IEEE Trans Biomed Eng 58(1), 2535.CrossRefGoogle Scholar
de Kemp, R.A., Epstein, F.H., Catana, C., Tsui, B.M. & Ritman, E.L. (2010). Small-animal molecular imaging methods. J Nucl Med 51(Suppl 1), 18S32S.CrossRefGoogle ScholarPubMed
Fahrenbach, W.H., Fahrenbach, W.H., Bacon, D.R., Morrison, J.C. & Van Buskirk, E.M. (1988). Controlled vascular corrosion casting of the rabbit eye. J Electron Microsc Techn 10(1), 1526.CrossRefGoogle ScholarPubMed
Gassner, J., Lametschwandtner, A., Weiger, T. & Bauer, H.C. (1994). Diluted and undiluted Mercox severely destroy unfixed endothelial cells. A light and electron microscopic study using cultured endothelial cells and tadpole tail fin vessels.Scanning Microsc 8(3), 721732; discussion 732–734. Google Scholar
Giuvarasteanu, I. (2007). Scanning electron microscopy of vascular corrosion casts—Standard method for studying microvessels. Rom J Morphol Embryol 48(3), 257261.Google ScholarPubMed
Hildebrand, T. & Rüegsegger, P. (1997). A new method for the model independent assessment of thickness and three-dimensional images. J Microsc 185, 6775.Google Scholar
Kurokawa, T. & Ogata, T. (1980). A scanning electron microscopic study on the lymphatic microcirculation of the rabbit mesenteric lymph node. A corrosion cast study. Acta Anat (Basel) 107(4), 439466.Google Scholar
Lorensen, W.E. & Cline, H.E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Comput Graph 21(4), 163169.CrossRefGoogle Scholar
Maga, P., Tomaszewski, K.A., Pasternak, A., Zawiliński, J., Tomaszewska, R., Gregorczyk-Maga, I. & Skrzat, J. (2013a). Extra- and intracerebral course of the recurrent artery of Heubner. Folia Morphol (Warsz) 72(2), 9499.Google Scholar
Maga, P., Tomaszewski, K.A., Skrzat, J., Tomaszewska, I.M., Iskra, T., Pasternak, A. & Walocha, J.A. (2013b). Microanatomical study of the recurrent artery of Heubner. Ann Anat 195(4), 342350.Google Scholar
Mazensky, D., Radonak, J., Danko, J., Petrovova, E. & Frankovicova, M. (2011). Anatomical study of blood supply to the spinal cord in the rabbit. Spinal Cord 49(4), 525528.Google Scholar
Mondy, W.L., Cameron, D., Timmermans, J.P., De Clerck, N., Sasov, A., Casteleyn, C. & Piegl, L.A. (2009a). Computer-aided design of microvasculature systems for use in vascular scaffold production. Biofabrication 1(3), 035002. Google Scholar
Mondy, W.L., Cameron, D., Timmermans, J.P., De Clerck, N., Sasov, A., Casteleyn, C. & Piegl, L.A. (2009b). Micro-CT of corrosion casts for use in the computer-aided design of microvasculature. Tissue Eng Part C Methods 15(4), 729738.Google Scholar
Nagayama, S., Endo, M. & Kobayashi, S. (1998). Microencapsulated osmium tetraoxide. A new recoverable and reusable polymer-supported osmium catalyst for dihydroxylation of olefins. J Org Chem 63(18), 60946095.Google Scholar
Nakamura, K. & Masuda, T. (1981). Scanning electron microscopy of corrosion cast of rat adrenal vasculatures with emphasis on medullary artery under ACTH administration. Tohoku J Exp Med 134(2), 203213.Google Scholar
Razavi, H., Dusch, M.N., Zarafshar, S.Y., Taylor, C.A. & Feinstein, J.A. (2012). A method for quantitative characterization of growth in the 3-D structure of rat pulmonary arteries. Microvasc Res 83(2), 146153.CrossRefGoogle ScholarPubMed
Ritman, E.L. (2004). Micro-computed tomography—Current status and developments. Annu Rev Biomed Eng 6(1), 185208.CrossRefGoogle ScholarPubMed
Rossi-Schneider, T.R., Verli, F.D., Yurgel, L.S., De Souza, M.A. & Cherubini, K. (2008). Contribution to the study of the vasculature of submandibular and sublingual glands and lymph nodes of rats by corrosion cast technique combined with scanning electron microscopy. Microsc Res Tech 71(10), 737741.Google Scholar
Ruzicka, M.C. (2008). On dimensionless numbers. Chem Eng Res Des 86(8), 835868.CrossRefGoogle Scholar
Sangiorgi, S., De Benedictis, A., Protasoni, M., Manelli, A., Reguzzoni, M., Cividini, A., Dell'orbo, C., Tomei, G. & Balbi, S. (2013). Early-stage microvascular alterations of a new model of controlled cortical traumatic brain injury: 3D morphological analysis using scanning electron microscopy and corrosion casting. J Neurosurg 118(4), 763774.Google Scholar
Schraufnagel, D.E. & Schmid, A. (1989). Pulmonary capillary density in rats given monocrotaline. A cast corrosion study. Am Rev Respir Dis 140(5), 14051409.Google Scholar
Smith, R. (2002). The staining of polymers. Microsc Microanal 8(Suppl 2), 190191.CrossRefGoogle Scholar
Smith, R.W. & Bryg, V. (2006). Staining polymers for microscopical examination. Rubber Chem Technol 79(3), 520540.CrossRefGoogle Scholar
Stefanov, M., Kim, J.D., Nam, M.H. & Soh, K.S. (2013). New approach of corrosion casting using direct injection of Mercox into the parenchyma of different organs. Anat Rec (Hoboken) 296(5), 724725.Google Scholar
Tepperman, J. & Pearlman, D. (1961). Effects of exercise and anemia on coronary arteries of small animals as revealed by the corrosion-cast technique. Circ Res 9, 576584.CrossRefGoogle ScholarPubMed
Travers, V., Kanaujia, R.R. & Ikuta, Y. (1987). Resin corrosion cast in experimental evaluation of femoral microanastomosis. Ann Chir Main 6(4), 324327.CrossRefGoogle ScholarPubMed
Vandeghinste, B., Trachet, B., Renard, M., Casteleyn, C., Staelens, S., Loeys, B., Segers, P. & Vandenberghe, S. (2011). Replacing vascular corrosion casting by in vivo micro-CT imaging for building 3D cardiovascular models in mice. Mol Imaging Biol 13(1), 7886.Google Scholar
Wagner, R.D., Van Loo, D., Hossler, F., Czymmek, K., Pauwels, E. & Van Hoorebeke, L. (2011). High-resolution imaging of kidney vascular corrosion casts with Nano-CT. Microsc Microanal 17(2), 215219.CrossRefGoogle ScholarPubMed
Walocha, J.A., Litwin, J.A., Bereza, T., Klimek-Piotrowska, W. & Miodoński, A.J. (2012). Vascular architecture of human uterine cervix visualized by corrosion casting and scanning electron microscopy. Hum Reprod 27(3), 727732.CrossRefGoogle ScholarPubMed
Walocha, J.A., Miodoński, A.J., Nowogrodzka-Zagórska, M., Kuciel, R. & Gorczyca, J. (2002). Application of a mixture of glycol polyethylenes for the preparation of microcorrosion casts—An observation. Folia Morphol (Warsz) 61(4), 313316.Google Scholar
Wenzel-Hora, B.I., Berens von Rautenfeld, D., Majewski, A., Lubach, D. & Partsch, H. (1987). Scanning electron microscopy of the initial lymphatics of the skin after use of the indirect application technique with glutaraldehyde and Mercox as compared to clinical findings. Lymphology 20(3), 126144.Google Scholar
Wu, X., Luboz, V., Krissian, K., Cotin, S. & Dawson, S. (2011). Segmentation and reconstruction of vascular structures for 3D real-time simulation. Med Image Anal 15(1), 2234.Google Scholar
Zhang, H.R. (1987). Scanning electron microscopy of the corrosion cast of the blood vessels of the uvea: I. Angioarchitecture of the iris and ciliary body. Zhonghua Yan Ke Za Zhi 23(2), 104107.Google Scholar