Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T10:24:27.855Z Has data issue: false hasContentIssue false

Oxide Wizard: An EELS Application to Characterize the White Lines of Transition Metal Edges

Published online by Cambridge University Press:  22 April 2014

Lluís Yedra*
Affiliation:
Laboratory of Electron Nanoscopies (LENS)-MIND/IN2UB, Dept. d’Electrònica, Universitat de Barcelona, C/Martí i Franquès 1, E-08028 Barcelona, Spain CCiT, Scientific and Technical Centers, Universitat de Barcelona, C/Lluís Solé i Sabaris 1, E-08028 Barcelona, Spain
Elena Xuriguera
Affiliation:
Ciència de Materials i Enginyeria Metal·lúrgica, Dept. d’Enginyeria Química, Universitat de Barcelona, E-08028 Barcelona, Spain
Marta Estrader
Affiliation:
Departament de Química Inorgànica, Universitat de Barcelona, Diagonal 645, E-08028, Barcelona, Spain
Alberto López-Ortega
Affiliation:
INSTM and Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, I-50019 Firenze, Italy
Maria D. Baró
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
Josep Nogués
Affiliation:
ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, E-08193 Bellaterra (Barcelona), Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
Manuel Roldan
Affiliation:
Oak Ridge National Laboratory, Materials Science & Technology Division, Oak Ridge, TN 37831, USA Departamento de Física Aplicada III & Instituto Pluridisciplinar, Universidad Complutense de Madrid, E-28040 Madrid, Spain
Maria Varela
Affiliation:
Oak Ridge National Laboratory, Materials Science & Technology Division, Oak Ridge, TN 37831, USA Departamento de Física Aplicada III & Instituto Pluridisciplinar, Universidad Complutense de Madrid, E-28040 Madrid, Spain
Sònia Estradé
Affiliation:
Laboratory of Electron Nanoscopies (LENS)-MIND/IN2UB, Dept. d’Electrònica, Universitat de Barcelona, C/Martí i Franquès 1, E-08028 Barcelona, Spain CCiT, Scientific and Technical Centers, Universitat de Barcelona, C/Lluís Solé i Sabaris 1, E-08028 Barcelona, Spain
Francesca Peiró
Affiliation:
Laboratory of Electron Nanoscopies (LENS)-MIND/IN2UB, Dept. d’Electrònica, Universitat de Barcelona, C/Martí i Franquès 1, E-08028 Barcelona, Spain
*
*Corresponding author.llyedra@el.ub.edu
Get access

Abstract

Physicochemical properties of transition metal oxides are directly determined by the oxidation state of the metallic cations. To address the increasing need to accurately evaluate the oxidation states of transition metal oxide systems at the nanoscale, here we present “Oxide Wizard.” This script for Digital Micrograph characterizes the energy-loss near-edge structure and the position of the transition metal edges in the electron energy-loss spectrum. These characteristics of the edges can be linked to the oxidation states of transition metals with high spatial resolution. The power of the script is demonstrated by mapping manganese oxidation states in Fe3O4/Mn3O4 core/shell nanoparticles with sub-nanometer resolution in real space.

Type
EDGE Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arevalo-Lopez, A.M. & Alario-Franco, M.A. (2009). Reliable method for determining the oxidation state in chromium oxides. Inorg Chem 48, 1184311846.CrossRefGoogle Scholar
Botton, G.A., Appel, C.C., Horsewell, A. & Stobbs, W.M. (1995). Quantification of the EELS near-edge structures to study Mn doping in oxides. J Microsc-Oxf 180, 211216.Google Scholar
Cave, L., Al, T., Loomer, D., Cogswell, S. & Weaver, L. (2006). A STEM/EELS method for mapping iron valence ratios in oxide minerals. Micron 37, 301309.CrossRefGoogle ScholarPubMed
Colliex, C., Manoubi, T. & Ortiz, C. (1991). Electron-energy-loss-spectroscopy near-edge fine-structures in the iron-oxygen system. Phys Rev B 44, 1140211411.Google Scholar
Daulton, T.L., Little, B.J., Lowe, K. & Jones-Meehan, J. (2002). Electron energy loss spectroscopy techniques for the study of microbial chromium (VI) reduction. J Microbiol Meth 50, 3954.CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York, NY, USA: Plenum Press.Google Scholar
Estrader, M., López-Ortega, A., Estradé, S., Golosovsky, I.V., Salazar-Alvarez, G., Vasilakaki, M., Trohidou, K.N. Varela, M., Stanley, D.C., Sinko, M., Pechan, M.J., Keavney, D.J., Peiró, F., Suriñach, S., Baró, M.D. & Nogués, J. (2013). Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nat Commun 4, 2960.CrossRefGoogle ScholarPubMed
Garvie, L. & Craven, A. (1994). High-resolution parallel electron-energy-loss spectroscopy of Mn L(2,3)-edges in inorganic manganese compounds. Phys Chem Miner 21, 191206.Google Scholar
Garvie, L.A.J. & Buseck, P.R. (1998). Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature 396, 667670.Google Scholar
Gilbert, B., Frazer, B., Belz, A., Conrad, P., Nealson, K., Haskel, D., Lang, J., Srajer, G. & De Stasio, G. (2003). Multiple scattering calculations of bonding and X-ray absorption spectroscopy of manganese oxides. J Phys Chem A 107, 28392847.CrossRefGoogle Scholar
Gloter, A., Serin, V., Turquat, C., Cesari, C., Leroux, C. & Nihoul, G. (2001). Vanadium valency and hybridization in V-doped hafnia investigated by electron energy loss spectroscopy. Eur Phys J B 22, 179186.CrossRefGoogle Scholar
Graetz, J., Ahn, C., Ouyang, H., Rez, P. & Fultz, B. (2004). White lines and d-band occupancy for the 3d transition-metal oxides and lithium transition-metal oxides. Phys Rev B 69, 235103.Google Scholar
Gubbens, A., Barfels, M., Trevor, C., Twesten, R., Mooney, P., Thomas, P., Menon, N., Kraus, B., Mao, C. & McGinn, B. (2010). The GIF quantum, a next generation post-column imaging energy filter. Ultramicroscopy 110, 962970.Google Scholar
Kourkoutis, L.F., Hotta, Y., Susaki, T., Hwang, H.Y. & Muller, D.A. (2006). Nanometer scale electronic reconstruction at the interface between LaVO3 and LaVO4 . Phys Rev Lett 97, 256803.Google Scholar
Kurata, H. & Colliex, C. (1993). Electron-energy-loss core-edge structures in manganese oxides. Phys Rev B 48, 21022108.Google Scholar
Laffont, L. & Gibot, P. (2010). High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn3O4 nanoparticles. Mater Charact 61, 12681273.CrossRefGoogle Scholar
Leapman, R.D., Grunes, L.A. & Fejes, P.L. (1982). Study of the L2,3 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys Rev B 26, 614635.Google Scholar
Logvenov, G., Gozar, A. & Bozovic, I. (2009). High-temperature superconductivity in a single copper-oxygen plane. Science 326, 699702.CrossRefGoogle Scholar
Loomer, D.B., Al, T.A., Weaver, L. & Cogswell, S. (2007). Manganese valence imaging in Mn minerals at the nanoscale using STEM-EELS. Am Mineral 92, 7279.CrossRefGoogle Scholar
Lopez-Ortega, A., Estrader, M., Salazar-Alvarez, G., Estrade, S., Golosovsky, I.V., Dumas, R.K., Keavney, D.J., Vasilakaki, M., Trohidou, K.N., Sort, J., Peiro, F., Surinach, S., Baro, M.D. & Nogues, J. (2012). Strongly exchange coupled inverse ferrimagnetic soft/hard, MnxFe3-xO4/FexMn3-xO4, core/shell heterostructured nanoparticles. Nanoscale 4, 51385147.Google Scholar
Luo, W., Franceschetti, A., Varela, M., Tao, J., Pennycook, S.J. & Pantelides, S.T. (2007). Orbital-occupancy versus charge ordering and the strength of electron correlations in electron-doped CaMnO3 . Phys Rev Lett 99, 036402.CrossRefGoogle ScholarPubMed
Luo, W., Varela, M., Tao, J., Pennycook, S.J. & Pantelides, S.T. (2009). Electronic and crystal-field effects in the fine structure of electron energy-loss spectra of manganites. Phys Rev B 79, 052405.Google Scholar
McNaught, A.D. & Wilkinson, A. (1997). IUPAC. Compendium of Chemical Terminology (the “Gold Book”). Oxford, UK: Blackwell Scientific Publications.Google Scholar
Meneses, C.T., Vicentin, F.C., Sasaki, J.M. & Macedo, M.A. (2007). Influence of Li on the K-edge of O and L2,3 of the Mn XANES in LixMn2O4 thin films. J Electron Spectrosc Rel Phen 156, 326328.CrossRefGoogle Scholar
Paterson, J.H. & Krivanek, O.L. (1990). ELNES of 3d transition-metal oxides: II. Variations with oxidation state and crystal structure. Ultramicroscopy 32, 319325.CrossRefGoogle Scholar
Pearson, D.H., Ahn, C.C. & Fultz, B. (1993). White lines and d-electron occupancies for the 3d and 4d transition metals. Phys Rev B 47, 8471.Google Scholar
Rask, J., Miner, B. & Buseck, P. (1987). Determination of manganese oxidation-states in solids by electron energy-loss spectroscopy. Ultramicroscopy 21, 321326.Google Scholar
Riedl, T., Gemming, T., Gruner, W., Acker, J. & Wetzig, K. (2007). Determination of manganese valency in La1-xSrxMnO3 using ELNES in the (S)TEM. Micron 38, 224230.Google Scholar
Riedl, T., Gemming, T. & Wetzig, K. (2006). Extraction of EELS white-line intensities of manganese compounds: Methods, accuracy, and valence sensitivity. Ultramicroscopy 106, 284291.Google Scholar
Riedl, T., Serra, R., Calmels, L. & Serin, V. (2008). Valence sensitivity of Fe-L2,3 white-line ratios extracted from EELS. In EMC 2008, Volume 1: Instrumentation and Methods, M. Luysberg, K. Tillmann & Thomas Weirich (Eds.), pp. 419420). Berlin, Germany: Springer-Verlag Berlin Heidelberg.Google Scholar
Salazar-Alvarez, G., Lidbaum, H., Lopez-Ortega, A., Estrader, M., Leifer, K., Sort, J., Surinach, S., Baro, M.D. & Nogues, J. (2011). Two-, three-, and four-component magnetic multilayer onion nanoparticles based on iron oxides and manganese oxides. J Am Chem Soc 133, 1673816741.Google Scholar
Schmid, H.K. & Mader, W. (2006). Oxidation states of Mn and Fe in various compound oxide systems. Micron 37, 426432.CrossRefGoogle ScholarPubMed
Sherman, D.M. (1984). The electronic-structures of manganese oxide minerals. Am Mineral 69, 788799.Google Scholar
Suchorski, Y., Rihko-Struckmann, L., Klose, F., Ye, Y., Alandjiyska, M., Sundmacher, K. & Weiss, H. (2005). Evolution of oxidation states in vanadium-based catalysts under conventional XPS conditions. Appl Surf Sci 249, 231237.Google Scholar
Sun, J., Krusinelbaum, L., Duncombe, P., Gupta, A. & Laibowitz, R. (1997). Temperature dependent, non-ohmic magnetoresistance in doped perovskite manganate trilayer junctions. Appl Phys Lett 70, 17691771.CrossRefGoogle Scholar
Tafto, J. & Krivanek, O.L. (1982). Site-specific valence determination by electron energy-loss spectroscopy. Phys Rev Lett 48, 560563.CrossRefGoogle Scholar
Tan, H., Verbeeck, J., Abakumov, A. & Van Tendeloo, G. (2012). Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 2433.Google Scholar
Turquat, C., Leroux, C., Gloter, A., Serin, V. & Nihoul, G. (2001). V-doped HfO2: Thermal stability and vanadium valence. Int J Inorg Mater 3, 10251032.Google Scholar
Van Aken, P.A., Liebscher, B. & Styrsa, V.J. (1998). Quantitative determination of iron oxidation states in minerals using Fe L2,3 -edge electron energy-loss near-edge structure spectroscopy. Phys Chem Miner 25, 323327.Google Scholar
Varela, M., Oxley, M.P., Luo, W., Tao, J., Watanabe, M., Lupini, A.R., Pantelides, S.T. & Pennycook, S.J. (2009). Atomic-resolution imaging of oxidation states in manganites. Phys Rev B 79, 085117.Google Scholar
Wang, Y.Q., Maclaren, I. & Duan, X.F. (2001). EELS analysis of manganese valence states in rare-earth manganites (La1-xYx)0.5(Ca1-ySry)0.5MnO3 . Mat Sci Eng A 318, 259263.Google Scholar
Zhang, S., Livi, K.J.T., Gaillot, A., Stone, A.T. & Veblen, D.R. (2010). Determination of manganese valence states in (Mn3+, Mn4+) minerals by electron energy-loss spectroscopy. Am Mineral 95, 17411746.Google Scholar