Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T03:01:10.014Z Has data issue: false hasContentIssue false

Photon-Assisted Electron Energy Loss Spectroscopy and Ultrafast Imaging

Published online by Cambridge University Press:  03 July 2009

Archie Howie*
Affiliation:
Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
Get access

Abstract

A variety of ways is described in which photons can be used not only for ultrafast electron microscopy but also to enormously widen the energy range of spatially-resolved electron spectroscopy. Periodic chains of femtosecond laser pulses are a particularly important and accurately timed source for single-shot imaging and diffraction as well as for several forms of pump-probe microscopy at even higher spatial resolution and sub-picosecond timing. Many exciting new fields are opened up for study by these developments. Ultrafast, single shot diffraction with intense pulses of X-rays supplemented by phase retrieval techniques may eventually offer a challenging alternative and purely photon-based route to dynamic imaging at high spatial resolution.

Type
Special Section: Ultrafast Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, E., Pennycook, S.J. & Tsai, A.P. (2003). Direct observation of a local thermal vibration anomaly in a quasicrystal. Nature 421, 347350.CrossRefGoogle Scholar
Balk, L.J., Davies, D.G. & Kultscher, N. (1984). The dependence of scanning electron microscopy (SEAM) imaging on chopping and detection frequencies for metal samples. Phys Stat Sol A 82, 2333.CrossRefGoogle Scholar
Baum, P. & Zewail, A.H. (2006). Breaking resolution limits in ultrafast electron diffraction and microscopy. Proc NAS 103, 1610516110.CrossRefGoogle ScholarPubMed
Boersch, H., Geiger, J. & Stickel, W. (1966). Interaction of 25 keV electrons with lattice vibrations in LiF. Phys Rev Lett 17, 379381.CrossRefGoogle Scholar
Bostanjoglo, O. (2002). High-speed electron microscopy. Adv Imag Elect Phys 121, 151.CrossRefGoogle Scholar
Cao, J., Hao, Z., Park, H., Tao, C., Kau, D. & Blaszyk, L. (2003). Femtosecond electron diffraction for direct measurement of ultrafast atomic motions. Appl Phys Lett 83, 10441047.CrossRefGoogle Scholar
Carbone, F., Baum, P., Rudolf, P. & Zewail, A.H. (2008). Structural preablation of dynamics of graphite observed by ultrafast electron crystallography. Phys Rev Lett 100, 035501.CrossRefGoogle ScholarPubMed
Davies, D.G. (1986). Scanning electron acoustic microscopy and its applications. Phil Trans Roy Soc 320, 243255.Google Scholar
de Abajo, F.J.G. & Kociak, M. (2008). Electron energy gain spectroscopy. New J Phys 10, 073035.CrossRefGoogle Scholar
Elangovan, M., Day, R.N. & Periasamy, A. (2002). Nanosecond fluorescent resonance energy transfer-fluorescent lifetime imaging microscopy to localize protein inteactions in a single living cell. J Microsc 205, 314.CrossRefGoogle Scholar
Gedik, N., Yang, D-S., Logvenov, G., Bozovic, I. & Zewail, A.H. (2007). Non-equilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 316, 425429.CrossRefGoogle Scholar
Goodwin, A.L., Tucker, M.G., Dove, M.T. & Keen, D.A. (2004). Phonons from powder diffraction: A quantitative model-dependent evaluation. Phys Rev Lett 93, 075502.CrossRefGoogle Scholar
Grinolds, M.S., Lobastov, V.A., Weissenrieder, J. & Zewail, A.H. (2006). Four-dimensional ultrafast electron microscopy of phase transitions. Proc NAS 103, 1842718431.CrossRefGoogle ScholarPubMed
Heinreich, A.J., Gupta, J.A., Lutz, C.P. & Eigler, D.M. (2004). Single-atom spin-flip spectroscopy. Science 306, 466468.CrossRefGoogle Scholar
Hohlfield, J., Wellershoff, S.-S., Güdde, J., Conrad, U., Jähnke, V. & Matthias, E. (2000). Electron and lattice dynamics following optical excitation of metals. Chem Phys 251, 237258.CrossRefGoogle Scholar
Howie, A. (2004). Ultralow-energy excitations and prospects for spatially resolved spectroscopy. Microsc Microanal 10, 2833.CrossRefGoogle ScholarPubMed
Hubert, C., Levy, J., Cukauskas, E.J. & Kirchoefer, S.W. (2000). Mesoscopic microwave dispersion in ferroelectric thin films. Phys Rev Lett 85, 19982001.CrossRefGoogle ScholarPubMed
Kim, J.S., LaGrange, T., Reed, B.W., Taheri, M.L., Armstrong, M.R., King, W.E., Browning, N.D. & Campbell, G.H. (2008). Direct imaging of transient structures using nanosecond in situ TEM. Science 321, 14721475.CrossRefGoogle ScholarPubMed
King, W.E., Campbell, G.H., Frank, A., Reed, B., Schmerge, B.J., Siwick, B.J., Stuart, B.C. & Weber, P.M. (2005). Ultrafast electron microscopy in materials science, biology and chemistry. J Appl Phys 97, 111101.CrossRefGoogle Scholar
Kwon, O-H., Barwick, B., Park, H.S., Baskin, J.S. & Zewail, A.H. (2008). 4D visualization of embryonic structural crystallization by single-pulse microscopy. Proc Natl Acad Sci USA 105, 85198524.CrossRefGoogle ScholarPubMed
Lauhon, L.J. & Ho, W. (1999). Single molecule vibrational spectroscopy and microscopy: CO on Cu (001) and Cu (110). Phys Rev B 60, R8525R8528.CrossRefGoogle Scholar
Lobastov, V.A., Srinivasan, R. & Zewail, A.H. (2005). Four-dimensional ultrafast electron microscopy. Proc Natl Acad Sci USA 102, 70697073.CrossRefGoogle ScholarPubMed
Lobastov, V.A., Weissenrieder, J., Tang, J. & Zewail, A.H. (2007). Ultrafast electron microscopy (UEM) four-dimensional imaging and diffraction of nanostructures during phase transitions. Nano Lett 7, 25522559.CrossRefGoogle ScholarPubMed
Marchesini, S. (2007). A unified evaluation of iterative projection algorithms for phase retrieval. Rev Sci Instrum 78, 011301.CrossRefGoogle ScholarPubMed
Martin, Y., Zenhausen, F. & Wickramasinghe, H.K. (1996). Scattering spectroscopy of molecules at nanometer resolution. Appl Phys Lett 68, 24752477.CrossRefGoogle Scholar
McDonald, J.P., Rees, J.A. & Yasilove, S.M. (2007). Pump-probe imaging of femtosecond laser ablation of silicon with thermally grown oxide films. J Appl Phys 102, 063109.CrossRefGoogle Scholar
Merano, M., Sonderegger, S., Crottini, A., Collin, S., Renucci, P., Pelucchi, E., Malko, A., Baier, M.H. & Ganiere, J.-D. (2005). Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature 438, 479482.CrossRefGoogle ScholarPubMed
Meyer zu Heringdorf, F.-J., Chelaru, L.I., Möllenbeck, S., Thien, D. & Horn-von Hoegen, M. (2007). Femtosecond photoemission microscopy. Surf Sci 601, 47004705.CrossRefGoogle Scholar
Mullejans, H., Bleloch, A.L., Howie, A. & Tomita, M. (1993). Secondary electron coincidence detection and time of flight spectroscopy. Ultramicroscopy 52, 360368.CrossRefGoogle Scholar
Nelayah, J., Kociak, M., Stephan, O., de Abajo, F.J.G., Tence, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Moran, L.M. & Colliex, C. (2007). Mapping surface plasmons in single metallic nanoparticles. Nat Phys 3, 348353.CrossRefGoogle Scholar
Osakabe, N., Harada, K., Lutwyche, M.I., Kasai, H. & Tonomura, A. (1997). Time-resolved observation of thermal motions by transmission electron microscopy. Appl Phys Lett 70, 940942.CrossRefGoogle Scholar
Park, H.S., Baskin, J.S., Kwon, O.H. & Zewail, A.H. (2007). Atomic-scale imaging in real and energy space developed in ultrafast electron microscopy. Nano Lett 7, 25452551.CrossRefGoogle ScholarPubMed
Poncharal, P., Wang, Z.L., Ugarte, D. & de Heer, W.A. (1999). Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 15131516.CrossRefGoogle ScholarPubMed
Poulin, P.R. & Nelson, K.A. (2006). Irreversible organic crystalline chemistry monitored in real time. Science 313, 17561759.CrossRefGoogle ScholarPubMed
Reed, B.W., Armstrong, M.R., Browning, N.D., Campbell, G.H., Evans, J.E., LaGrange, T. & Masiel, D.J. (2009). The evolution of ultrafast electron microscope instrumentation. Microsc Microanal 15, 272281.CrossRefGoogle ScholarPubMed
Rugar, D., Budakian, R., Mamin, H.J. & Chui, B.W. (2004). Single spin detection by magnetic resonance force microscopy. Nature 430, 329332.CrossRefGoogle ScholarPubMed
Sandberg, R.L., Paul, A., Raymondson, D.A., Hadrich, S., Gaudiosi, D.M., Holtsnider, J., Tobey, R.I., Cohen, O., Mumane, M.M. & Kapteyn, H.C. (2007). Lensless diffractive imaging using table-top coherent high-harmonic soft X-ray beams. Phys Rev Lett 99, 098103.CrossRefGoogle Scholar
Schonhense, G., Elmers, H.J., Nepijko, S.A. & Schneider, C.M. (2006). Time-resolved photoemission electron microscopy. Adv Imag Elect Phys 142, 159323.CrossRefGoogle Scholar
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Miller, R.J.D. (2003). An atomic-level view of melting using femtosecond electron diffraction. Science 302, 13821385.CrossRefGoogle ScholarPubMed
Timoshenko, S.P. & Goodier, J.N. (1970). Theory of Elasticity. Singapore: McGraw Hill.Google Scholar
Treacy, M.M.J., Ebbesen, T.W. & Gibson, J.M. (1996). Exceptionally high Young's modulus for individual carbon nanotubes. Nature 381, 678680.CrossRefGoogle Scholar
Wu, S.W., Ogawa, N. & Ho, W. (2006). Atomic-scale coupling of photons to single-molecule junctions. Science 312, 13621365.CrossRefGoogle ScholarPubMed
Yamamoto, N., Araya, K. & Garcia de Abajo, F.J. (2001). Photon emission from silver particles induced by a high energy electron beam. Phys Rev B 64, 205419.CrossRefGoogle Scholar