Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T04:09:05.608Z Has data issue: false hasContentIssue false

Positional Correlative Anatomy of Invertebrate Model Organisms Increases Efficiency of TEM Data Production

Published online by Cambridge University Press:  02 September 2014

Irina Kolotuev*
Affiliation:
Fédération de Recherche BIOSIT, Université de Rennes 1, Plateforme microscopie électronique MRic, Campus santé, 2 avenue du Professeur Léon-Bernard, 35043 Rennes, France Institut de Génétique et Développement de Rennes, CNRS UMR 6290, 2 avenue du Professeur Léon-Bernard, 35043 Rennes, France
*
*Corresponding author.irina.kolotueva@univ-rennes1.fr
Get access

Abstract

Transmission electron microscopy (TEM) is an important tool for studies in cell biology, and is essential to address research questions from bacteria to animals. Recent technological innovations have advanced the entire field of TEM, yet classical techniques still prevail for most present-day studies. Indeed, the majority of cell and developmental biology studies that use TEM do not require cutting-edge methodologies, but rather fast and efficient data generation. Although access to state-of-the-art equipment is frequently problematic, standard TEM microscopes are typically available, even in modest research facilities. However, a major unmet need in standard TEM is the ability to quickly prepare and orient a sample to identify a region of interest. Here, I provide a detailed step-by-step method for a positional correlative anatomy approach to flat-embedded samples. These modifications make the TEM preparation and analytic procedures faster and more straightforward, supporting a higher sampling rate. To illustrate the modified procedures, I provide numerous examples addressing research questions in Caenorhabditis elegans and Drosophila. This method can be equally applied to address questions of cell and developmental biology in other small multicellular model organisms.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beitel, G.J. & Krasnow, M.A. (2000). Genetic control of epithelial tube size in the Drosophila tracheal system. Development 127(15), 32713282.CrossRefGoogle ScholarPubMed
Bushby, A.J., Mariggi, G., Armer, H.E. & Collinson, L.M. (2012). Correlative light and volume electron microscopy: using focused ion beam scanning electron microscopy to image transient events in model organisms. Methods Cell Biol 111, 357382.CrossRefGoogle ScholarPubMed
Denk, W. & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure’. PLoS Biol 2(11), e329.CrossRefGoogle ScholarPubMed
Dierksen, K., Typke, D., Hegerl, R., Walz, J., Sackmann, E. & Baumeister, W. (1995). Three-dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography. Biophys J 68(4), 14161422.CrossRefGoogle ScholarPubMed
Faas, F.G., Barcena, M., Agronskaia, A.V., Gerritsen, H.C., Moscicka, K.B., Diebolder, C.A., van Driel, L.F., Limpens, R.W., Bos, E., Ravelli, R.B., Koning, R.I., Koster, A.J. (2013). Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy. J Struct Biol 181(3), 283290.CrossRefGoogle ScholarPubMed
Ghabrial, A.S., Levi, B.P. & Krasnow, M.A. (2011). A systematic screen for tube morphogenesis and branching genes in the Drosophila tracheal system. PLoS Genet 7(7), e1002087.CrossRefGoogle ScholarPubMed
Giddings, T.H. (2003). Freeze-substitution protocols for improved visualization of membranes in high-pressure frozen samples. J Microsc 212(Pt 1), 5361.CrossRefGoogle ScholarPubMed
Hall, D.H., Hartwieg, E. & Nguyen, K.C. (2012). Modern electron microscopy methods for C. elegans. Methods Cell Biol 107, 93149.CrossRefGoogle ScholarPubMed
Horne-Badovinac, S. & Bilder, D. (2005). Mass transit: epithelial morphogenesis in the Drosophila egg chamber. Dev Dyn 232(3), 559574.CrossRefGoogle ScholarPubMed
Hughes, L., Hawes, C., Monteith, S. & Vaughan, S. (2014). Serial block face scanning electron microscopy-the future of cell ultrastructure imaging. Protoplasma 251(2), 395401.CrossRefGoogle ScholarPubMed
Jimenez, N. & Post, J.A. (2012). A novel approach for intracellular 3D immuno-labeling for electron tomography. Traffic 13(7), 926933.CrossRefGoogle ScholarPubMed
Jimenez, N., Van Donselaar, E.G., De Winter, D.A., Vocking, K., Verkleij, A.J. & Post, J.A. (2010). Gridded Aclar: preparation methods and use for correlative light and electron microscopy of cell monolayers, by TEM and FIB-SEM. J Microsc 237(2), 208220.CrossRefGoogle ScholarPubMed
Kasthuri, N. & Lichtman, J.W. (2010). Neurocartography. Neuropsychopharmacology 35(1), 342343.CrossRefGoogle ScholarPubMed
Kingsley, R.E. & Cole, N.L. (1988). Preparation of cultured mammalian cells for transmission and scanning electron microscopy using Aclar film. J Electron Microsc Tech 10(1), 7785.CrossRefGoogle ScholarPubMed
Knott, G., Marchman, H., Wall, D. & Lich, B. (2008). Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28(12), 29592964.CrossRefGoogle ScholarPubMed
Kolotuev, I., Schwab, Y. & Labouesse, M. (2010). A precise and rapid mapping protocol for correlative light and electron microscopy of small invertebrate organisms. Biol Cell 102(2), 121132.CrossRefGoogle Scholar
Kurth, T., Berger, J., Wilsch-Brauninger, M., Kretschmar, S., Cerny, R., Schwarz, H., Lofberg, J., Piendl, T. & Epperlein, H.H. (2010). Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum. Methods Cell Biol 96, 395423.CrossRefGoogle ScholarPubMed
Lanman, J., Crum, J., Deerinck, T.J., Gaietta, G.M., Schneemann, A., Sosinsky, G.E., Ellisman, M.H. & Johnson, J.E. (2008). Visualizing flock house virus infection in Drosophila cells with correlated fluorescence and electron microscopy. J Struct Biol 161(3), 439446.CrossRefGoogle ScholarPubMed
Manning, G. & Krasnow, M.A. (1993). Development of the Drosophila tracheal system. In The Development of Drosophila, pp. 609685. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
McDonald, K. & Morphew, M.K. (1993). Improved preservation of ultrastructure in difficult-to-fix organisms by high pressure freezing and freeze substitution: I. Drosophila melanogaster and Strongylocentrotus purpuratus embryos. Microsc Res Tech 24(6), 465473.CrossRefGoogle ScholarPubMed
McDonald, K.L., Morphew, M., Verkade, P. & Muller-Reichert, T. (2007). Recent advances in high-pressure freezing: equipment- and specimen-loading methods. Methods Mol Biol 369, 143173.CrossRefGoogle ScholarPubMed
Metzger, R.J. & Krasnow, M.A. (1999). Genetic control of branching morphogenesis. Science 284(5420), 16351639.CrossRefGoogle ScholarPubMed
Micheva, K.D. & Smith, S.J. (2007). Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55(1), 2536.CrossRefGoogle ScholarPubMed
Mironov, A.A., Beznoussenko, G.V., Luini, A. & Polishchuk, R.S. (2005). Visualizing intracellular events in vivo by combined video fluorescence and 3-D electron microscopy. Methods Enzymol 404, 4357.CrossRefGoogle ScholarPubMed
Muller-Reichert, T., Hohenberg, H., O’Toole, E.T. & McDonald, K. (2003). Cryoimmobilization and three-dimensional visualization of C. elegans ultrastructure. J Microsc 212(Pt 1), 7180.CrossRefGoogle ScholarPubMed
Muller-Reichert, T., Mantler, J., Srayko, M. & O'Toole, E. (2008). Electron microscopy of the early Caenorhabditis elegans embryo. J Microsc 230(Pt 2), 297307.CrossRefGoogle ScholarPubMed
Muller-Reichert, T., Srayko, M., Hyman, A., O’Toole, E.T. & McDonald, K. (2007). Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. Methods Cell Biol 79, 101119.CrossRefGoogle ScholarPubMed
Nixon, S.J., Webb, R.I., Floetenmeyer, M., Schieber, N., Lo, H.P. & Parton, R.G. (2009). A single method for cryofixation and correlative light, electron microscopy and tomography of zebrafish embryos. Traffic 10(2), 131136.CrossRefGoogle ScholarPubMed
Perinetti, G., Muller, T., Spaar, A., Polishchuk, R., Luini, A. & Egner, A. (2009). Correlation of 4Pi and electron microscopy to study transport through single Golgi stacks in living cells with super resolution. Traffic 10(4), 379391.CrossRefGoogle ScholarPubMed
Poulton, J.S. & Deng, W.M. (2007). Cell-cell communication and axis specification in the Drosophila oocyte. Dev Biol 311(1), 110.CrossRefGoogle ScholarPubMed
Redemann, S. & Muller-Reichert, T. (2013). Correlative light and electron microscopy for the analysis of cell division. J Microsc 251(2), 109112.CrossRefGoogle ScholarPubMed
Ribeiro, C., Neumann, M. & Affolter, M. (2004). Genetic control of cell intercalation during tracheal morphogenesis in Drosophila. Curr Biol 14(24), 21972207.CrossRefGoogle ScholarPubMed
Rostaing, P., Weimer, R.M., Jorgensen, E.M., Triller, A. & Bessereau, J.L. (2004). Preservation of immunoreactivity and fine structure of adult C. elegans tissues using high-pressure freezing. J Histochem Cytochem 52(1), 112.CrossRefGoogle ScholarPubMed
Samakovlis, C., Manning, G., Steneberg, P., Hacohen, N., Cantera, R. & Krasnow, M.A. (1996). Genetic control of epithelial tube fusion during Drosophila tracheal development. Development 122(11), 35313536.CrossRefGoogle ScholarPubMed
Sartori, A., Gatz, R., Beck, F., Rigort, A., Baumeister, W. & Plitzko, J.M. (2007). Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160(2), 135145.CrossRefGoogle Scholar
Shu, X., Lev-Ram, V., Deerinck, T.J., Qi, Y., Ramko, E.B., Davidson, M.W., Jin, Y., Ellisman, M.H. & Tsien, R.Y. (2011). A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9(4), e1001041.CrossRefGoogle ScholarPubMed
Sims, P.A. & Hardin, J.D. (2007). Fluorescence-integrated transmission electron microscopy images: integrating fluorescence microscopy with transmission electron microscopy. Methods Mol Biol 369, 291308.CrossRefGoogle ScholarPubMed
Starborg, T., Kalson, N.S., Lu, Y., Mironov, A., Cootes, T.F., Holmes, D.F. & Kadler, K.E. (2013). Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization. Nat Protoc 8(7), 14331448.CrossRefGoogle ScholarPubMed
Vicidomini, G., Gagliani, M.C., Canfora, M., Cortese, K., Frosi, F., Santangelo, C., Di Fiore, P.P., Boccacci, P., Diaspro, A. & Tacchetti, C. (2008). High data output and automated 3D correlative light-electron microscopy method. Traffic 9(11), 18281838.CrossRefGoogle ScholarPubMed
Wang, L., Humbel, B.M. & Roubos, E.W. (2005). High-pressure freezing followed by cryosubstitution as a tool for preserving high-quality ultrastructure and immunoreactivity in the Xenopus laevis pituitary gland. Brain Res Brain Res Protoc 15(3), 155163.CrossRefGoogle ScholarPubMed
Watanabe, S., Punge, A., Hollopeter, G., Willig, K.I., Hobson, R.J., Davis, M.W., Hell, S.W. & Jorgensen, E.M. (2011). Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1), 8084.CrossRefGoogle ScholarPubMed
Williams, M.E., Wilke, S.A., Daggett, A., Davis, E., Otto, S., Ravi, D., Ripley, B., Bushong, E.A., Ellisman, M.H., Klein, G. & Ghosh, A. (2011). Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron 71(4), 640655.CrossRefGoogle ScholarPubMed
Xie, T. & Spradling, A.C. (2000). A niche maintaining germ line stem cells in the Drosophila ovary. Science 290(5490), 328330.CrossRefGoogle ScholarPubMed
Yahav, T., Maimon, T., Grossman, E., Dahan, I. & Medalia, O. (2011). Cryo-electron tomography: gaining insight into cellular processes by structural approaches. Curr Opin Struct Biol 21(5), 670677.CrossRefGoogle ScholarPubMed
Zacharogianni, M. & Rabouille, C. (2013). Trafficking along the secretory pathway in Drosophila cell line and tissues: a light and electron microscopy approach. Methods Cell Biol 118, 3549.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Kolotuev Supplementary Material

Figure S1

Download Kolotuev Supplementary Material(Image)
Image 21.4 MB