Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T07:48:55.322Z Has data issue: false hasContentIssue false

Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials

Published online by Cambridge University Press:  30 April 2015

Fengzai Tang
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
Michael P. Moody
Affiliation:
Departments of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Tomas L. Martin
Affiliation:
Departments of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Paul A.J. Bagot
Affiliation:
Departments of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Menno J. Kappers
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
Rachel A. Oliver*
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
*
*Corresponding author.rao28@cam.ac.uk
Get access

Abstract

Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of implantation damage induced by sample preparation. In the reconstructed InAlN layer Ga implantation was demonstrated for the standard “clean-up” voltage (5 kV), but this was significantly reduced by using a lower voltage (e.g., 1 kV). The characteristics of APT data from the desorption maps to the mass spectra and measured chemical compositions were examined within the GaN buffer layer underlying the InAlN layer in both pulsed laser and pulsed voltage modes. The measured Ga content increased monotonically with increasing laser pulse energy and voltage pulse fraction within the examined ranges. The best results were obtained at very low laser energy, with the Ga content close to the expected stoichiometric value for GaN and the associated desorption map showing a clear crystallographic pole structure.

Type
Materials Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, R., Bernal, R.A., Isheim, D. & Espinosa, H.D. (2011). Characterizing atomic composition and dopant distribution in wide band gap semiconductor nanowires using laser-assisted atom probe tomography. J Phys Chem C 115(36), 1768817694.CrossRefGoogle Scholar
Ambacher, O. (1998). Growth and applications of Group III nitrides. J Phys D: Appl Phys 31(20), 26532710.Google Scholar
Baloch, K.H., Johnston-Peck, A.C., Kisslinger, K., Stach, E.A. & Gradečak, S. (2013). Revisiting the “In-clustering” question in InGaN through the use of aberration-corrected electron microscopy below the knock-on threshold. Appl Phys Lett 102(19), 191910.Google Scholar
Bennett, S. (2011). Nitride Semiconductors Studied by Atom Probe Tomography and Correlative Techniques. Cambridge, UK: University of Cambridge.Google Scholar
Bennett, S., Ulfig, R., Clifton, P., Kappers, M., Barnard, J., Humphreys, C. & Oliver, R. (2011). Atom probe tomography and transmission electron microscopy of a Mg-doped AlGaN/GaN superlattice. Ultramicroscopy 111(3), 207211.Google Scholar
Choi, S., Jin Kim, H., Lochner, Z., Kim, J., Dupuis, R.D., Fischer, A.M., Juday, R., Huang, Y., Li, T. & Huang, J.Y. (2014). Origins of unintentional incorporation of gallium in AlInN layers during epitaxial growth, part I: Growth of AlInN on AlN and effects of prior coating. J Cryst Growth 388, 137142.Google Scholar
Choi, S., Wu, F., Shivaraman, R., Young, E.C. & Speck, J.S. (2012). Observation of columnar microstructure in lattice-matched InAlN/GaN grown by plasma assisted molecular beam epitaxy. Appl Phys Lett 100(23), 232102.Google Scholar
Cullen, D.A. & Smith, D.J. (2008). Assessment of surface damage and sidewall implantation in AlGaN-based high electron mobility transistor devices caused during focused-ion-beam milling. J Appl Phys 104(9), 094304.Google Scholar
Datta, R., Kappers, M., Vickers, M., Barnard, J. & Humphreys, C. (2004). Growth and characterisation of GaN with reduced dislocation density. Superlattices Microstruct 36(4), 393401.Google Scholar
Dawahre, N., Shen, G., Renfrow, S.N., Kim, S.M. & Kung, P. (2013). Atom probe tomography of AlInN/GaN HEMT structures. J Vac Sci Technol, B 31(4), 041802.CrossRefGoogle Scholar
Devaraj, A., Colby, R., Hess, W.P., Perea, D.E. & Thevuthasan, S. (2013). Role of photoexcitation and field ionization in the measurement of accurate oxide stoichiometry by laser-assisted atom probe tomography. J Phys Chem Lett 4(6), 993998.Google Scholar
Diercks, D.R., Gorman, B.P., Kirchhofer, R., Sanford, N., Bertness, K. & Brubaker, M. (2013). Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects. J Appl Phys 114(18), 184903.Google Scholar
Galtrey, M., Oliver, R., Kappers, M., McAleese, C., Zhu, D., Humphreys, C., Clifton, P., Larson, D. & Cerezo, A. (2008). Compositional inhomogeneity of a high-efficiency InxGa1-xN based multiple quantum well ultraviolet emitter studied by three dimensional atom probe. Appl Phys Lett 92(4), 041904.Google Scholar
Galtrey, M.J., Oliver, R.A., Kappers, M.J., Humphreys, C.J., Stokes, D.J., Clifton, P.H. & Cerezo, A. (2007). Three-dimensional atom probe studies of an InxGa1−xN∕GaN multiple quantum well structure: Assessment of possible indium clustering. Appl Phys Lett 90(6), 061903.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York: Springer.Google Scholar
Gault, B., Müller, M., La Fontaine, A., Moody, M., Shariq, A., Cerezo, A., Ringer, S. & Smith, G. (2010). Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. J Appl Phys 108(4), 044904.CrossRefGoogle Scholar
Götz, W., Kern, R., Chen, C., Liu, H., Steigerwald, D. & Fletcher, R. (1999). Hall-effect characterization of III–V nitride semiconductors for high efficiency light emitting diodes. Mater Sci Eng: B 59(1), 211217.Google Scholar
Gu, G.H., Jang, D.H., Nam, K.B. & Park, C.G. (2013). Composition fluctuation of in and well-width fluctuation in InGaN/GaN multiple quantum wells in light-emitting diode devices. Microsc Microanal 19(S5), 99104.Google Scholar
Ilegems, M. & Montgomery, H. (1973). Electrical properties of n-type vapor-grown gallium nitride. J Phys Chem Solids 34(5), 885895.CrossRefGoogle Scholar
Jarjour, A.F., Taylor, R.A., Oliver, R.A., Kappers, M.J., Humphreys, C.J. & Tahraoui, A. (2007). Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot. Appl Phys Lett 91(5), 052101.Google Scholar
Keller, S. & DenBaars, S.P. (2003). Metalorganic chemical vapor deposition of group III nitrides—a discussion of critical issues. J Cryst Growth 248, 479486.Google Scholar
Kellogg, G. & Tsong, T. (1980). Pulsed‐laser atom‐probe field‐ion microscopy. J Appl Phys 51(2), 11841193.CrossRefGoogle Scholar
Kelly, T.F., Vella, A., Bunton, J.H., Houard, J., Silaeva, E.P., Bogdanowicz, J. & Vandervorst, W. (2014). Laser pulsing of field evaporation in atom probe tomography. Curr Opin Solid State Mater Sci 18(2), 8189.Google Scholar
Kempshall, B., Schwarz, S., Prenitzer, B., Giannuzzi, L., Irwin, R. & Stevie, F. (2001). Ion channeling effects on the focused ion beam milling of Cu. J Vac Sci Technol, B 19(3), 749754.Google Scholar
Kim, J., Lochner, Z., Ji, M.-H., Choi, S., Kim, H.J., Kim, J.S., Dupuis, R.D., Fischer, A.M., Juday, R. & Huang, Y. (2014). Origins of unintentional incorporation of gallium in InAlN layers during epitaxial growth, part II: Effects of underlying layers and growth chamber conditions. J Cryst Growth 388, 143149.Google Scholar
Kirchhofer, R., Teague, M.C. & Gorman, B.P. (2013). Thermal effects on mass and spatial resolution during laser pulse atom probe tomography of cerium oxide. J Nucl Mater 436(1), 2328.Google Scholar
Larson, D., Foord, D., Petford-Long, A., Liew, H., Blamire, M., Cerezo, A. & Smith, G. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79(1), 287293.Google Scholar
Mazumder, B., Kaun, S.W., Lu, J., Keller, S., Mishra, U.K. & Speck, J.S. (2013). Atom probe analysis of AlN interlayers in AlGaN/AlN/GaN heterostructures. Appl Phys Lett 102(11), 111603.Google Scholar
Melmed, A., Martinka, M., Girvin, S., Sakurai, T. & Kuk, Y. (1981). Analysis of high resistivity semiconductor specimens in an energy‐compensated time‐of‐flight atom probe. Appl Phys Lett 39(5), 416417.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M. & Smith, G. (1996). Atom probe field ion microscopy. Oxford: Clarendon Press.Google Scholar
Moy, C.K., Ranzi, G., Petersen, T.C. & Ringer, S.P. (2011). Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters. Ultramicroscopy 111(6), 397404.Google Scholar
Müller, E.W. & Krishnaswamy, S. (1974). Energy deficits in pulsed field evaporation and deficit compensated atom‐probe designs. Rev Sci Instrum 45(9), 10531059.Google Scholar
Müller, M., Smith, G., Gault, B. & Grovenor, C. (2012). Phase separation in thick InGaN layers – A quantitative, nanoscale study by pulsed laser atom probe tomography. Acta Mater 60(10), 42774285.Google Scholar
Nakamura, S., Senoh, M., Iwasa, N. & Nagahama, S.-I. (1995). High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn J Appl Phys, Part 2 34, L797L799.Google Scholar
Oliver, R., Bennett, S., Zhu, T., Beesley, D., Kappers, M., Saxey, D., Cerezo, A. & Humphreys, C. (2010). Microstructural origins of localization in InGaN quantum wells. J Phys D: Appl Phys 43(35), 354003.Google Scholar
Prosa, T., Clifton, P., Zhong, H., Tyagi, A., Shivaraman, R., DenBaars, S., Nakamura, S. & Speck, J. (2011). Atom probe analysis of interfacial abruptness and clustering within a single InxGa1-xN quantum well device on semipolar (10 1 1) GaN substrate. Appl Phys Lett 98(19), 191903.Google Scholar
Prosa, T., Olson, D., Geiser, B., Larson, D., Henry, K. & Steel, E. (2013). Analysis of implanted silicon dopant profiles. Ultramicroscopy 132, 179185.Google Scholar
Rhode, S., Horton, M., Kappers, M., Zhang, S., Humphreys, C., Dusane, R., Sahonta, S.-L. & Moram, M. (2013). Mg doping affects dislocation core structures in GaN. Phys Rev Lett 111(2), 025502.Google Scholar
Riley, J.R., Bernal, R.A., Li, Q., Espinosa, H.D., Wang, G.T. & Lauhon, L.J. (2012). Atom probe tomography of a-axis GaN nanowires: analysis of nonstoichiometric evaporation behavior. ACS nano 6(5), 38983906.Google Scholar
Riley, J.R., Detchprohm, T., Wetzel, C. & Lauhon, L.J. (2014). On the reliable analysis of indium mole fraction within InxGa1-xN quantum wells using atom probe tomography. Appl Phys Lett 104(15), 152102.Google Scholar
Sadler, T.C., Kappers, M.J. & Oliver, R.A. (2011). The effects of varying metal precursor fluxes on the growth of InAlN by metal organic vapour phase epitaxy. J Cryst Growth 314(1), 1320.Google Scholar
Sanford, N., Blanchard, P., Brubaker, M., Bertness, K., Roshko, A., Schlager, J., Kirchhofer, R., Diercks, D. & Gorman, B. (2014). Laser‐assisted atom probe tomography of MBE grown GaN nanowire heterostructures. Physica Status Solidi (c) 11(3–4), 608612.Google Scholar
Saxey, D. (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111(6), 473479.Google Scholar
Silaeva, E.P., Karahka, M. & Kreuzer, H. (2013). Atom probe tomography and field evaporation of insulators and semiconductors: Theoretical issues. Curr Opin Solid State Mater Sci 17(5), 211216.Google Scholar
Smeeton, T., Kappers, M., Barnard, J., Vickers, M. & Humphreys, C. (2003). Electron-beam-induced strain within InGaN quantum wells: False indium “cluster” detection in the transmission electron microscope. Appl Phys Lett 83(26), 54195421.Google Scholar
Smith, M.D., Taylor, E., Sadler, T.C., Zubialevich, V.Z., Lorenz, K., Li, H.N., O'Connell, J., Alves, E., Holmes, J. & Martin, R. (2014). Determination of Ga auto-incorporation in nominal InAlN epilayers grown by MOCVD. J Mater Chem C 2, 57875792.Google Scholar
Speck, J. & Chichibu, S. (2009). Nonpolar and semipolar group III nitride-based materials. MRS Bull 34(05), 304312.Google Scholar
Stepień, Z.M. & Tsong, T.T. (1998). Formation of metal hydride ions in low-temperature field evaporation. Surf Sci 409(1), 5768.Google Scholar
Tamura, H., Tsukada, M., McKenna, K., Shluger, A., Ohkubo, T. & Hono, K. (2012). Laser-assisted field evaporation from insulators triggered by photoinduced hole accumulation. Phys Rev B 86(19), 195430.Google Scholar
Tang, F., Gault, B., Ringer, S.P. & Cairney, J.M. (2010). Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti–Si–N films. Ultramicroscopy 110(7), 836843.Google Scholar
Tang, F., Gianola, D., Moody, M., Hemker, K. & Cairney, J. (2012). Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour. Acta Mater 60(3), 10381047.Google Scholar
Tang, F., Zhu, T., Oehler, F., Fu, W.Y., Griffiths, J.T., Massabuau, F.C.-P., Kappers, M.J., Martin, T.L., Bagot, P.A. & Moody, M.P. (2015). Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography. Appl Phys Lett 106(7), 072104.Google Scholar
Thompson, K., Gorman, B., Larson, D., van Leer, B. & Hong, L. (2006). Minimization of Ga induced FIB damage using low energy clean-up. Microsc Microanal 12(S02), 17361737.CrossRefGoogle Scholar
Thompson, K., Lawrence, D., Larson, D., Olson, J., Kelly, T. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2), 131139.Google Scholar
Tsong, T. (1984). Formation of multiatomic cluster ions of silicon in pulsed‐laser stimulated field desorption. Appl Phys Lett 45(10), 11491151.Google Scholar
Yao, L., Gault, B., Cairney, J. & Ringer, S. (2010). On the multiplicity of field evaporation events in atom probe: a new dimension to the analysis of mass spectra. Philos Mag Lett 90(2), 121129.Google Scholar
Zhu, D., Wallis, D. & Humphreys, C. (2013). Prospects of III-nitride optoelectronics grown on Si. Rep Prog Phys 76(10), 106501.Google Scholar
Zhu, J., Fan, Y., Zhang, H., Lu, G., Wang, H., Zhao, D., Jiang, D., Liu, Z., Zhang, S. & Chen, G. (2012). Contribution of GaN template to the unexpected Ga atoms incorporated into AlInN epilayers grown under an indium-very-rich condition by metalorganic chemical vapor deposition (MOCVD). J Cryst Growth 348(1), 2530.Google Scholar