We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Type
Methods and Applications in Localization-based Super-resolution Microscopy
Kim, SJ, Fernandez-Martinez, J, Nudelman, I, et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature. 2018. doi:10.1038/nature26003CrossRefGoogle ScholarPubMed
2
Knockenhauer, KE, Schwartz, TU. The Nuclear Pore Complex as a Flexible and Dynamic Gate. Cell. 2016;164(6):1162–1171. doi:10.1016/j.cell.2016.01.034CrossRefGoogle ScholarPubMed
3
Grima, JC, Daigle, JG, Arbez, N, et al. Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron. 2017. doi:10.1016/j.neuron.2017.03.023CrossRefGoogle ScholarPubMed
4
Chou, C-C, Zhang, Y, Umoh, ME, et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci. 2018. doi:10.1038/s41593-017-0047-3CrossRefGoogle ScholarPubMed
5
Eftekharzadeh, B, Daigle, JG, Kapinos, LE, et al. Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron. 2018. doi:10.1016/j.neuron.2018.07.039CrossRefGoogle ScholarPubMed
Ozelius, LJ, Hewett, J, Kramer, P, et al. Fine localization of the torsion dystonia gene (DYT1) on human chromosome 9q34: YAC map and linkage disequilibrium. Genome Res. 1997;7(5):483–494. doi:10.1101/gr.7.5.483CrossRefGoogle ScholarPubMed
8
Goodchild, RE, Kim, CE, Dauer, WT. Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron. 2005;48(6):923–932. doi:10.1016/j.neuron.2005.11.010CrossRefGoogle ScholarPubMed