Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T21:49:23.681Z Has data issue: false hasContentIssue false

Progress in Aberration-Corrected High-Resolution Transmission Electron Microscopy Using Hardware Aberration Correction

Published online by Cambridge University Press:  16 May 2006

Markus Lentzen
Affiliation:
Institute of Solid State Research, Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, 52425 Jülich, Germany
Get access

Abstract

The design and construction of a double-hexapole aberration corrector has made it possible to build the prototype of a spherical-aberration corrected transmission electron microscope dedicated to high-resolution imaging on the atomic scale. The corrected instrument, a Philips CM200 FEG ST, has an information limit of better than 0.13 nm, and the spherical aberration can be varied within wide limits, even to negative values. The aberration measurement and the corrector control provide instrument alignments stable enough for materials science investigations. Analysis of the contrast transfer with the possibility of tunable spherical aberration has revealed new imaging modes: high-resolution amplitude contrast, extension of the point resolution to the information limit, and enhanced image intensity modulation for negative phase contrast. In particular, through the combination of small negative spherical aberration and small overfocus, the latter mode provides the high-resolution imaging of weakly scattering atom columns, such as oxygen, in the vicinity of strongly scattering atom columns. This article reviews further lens aberration theory, the principle of aberration correction through multipole lenses, aspects for practical work, and materials science applications.

Type
MICROSCOPY TECHNIQUES
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bastian, B., Spengler, K., & Typke, D. (1971). An electric-magnetic octopole element to correct spherical and chromatical aberrations of electron lenses. Optik 33, 591596.Google Scholar
Batson, P.E., Dellby, N., & Krivanek, O.L. (2002). Sub-Angstrom resolution using aberration corrected electron optics. Nature 418, 617620.Google Scholar
Beck, V.D. (1979). A hexapole spherical aberration corrector. Optik 53, 241255.Google Scholar
Bernhard, W. (1980). Erprobung eines sphärisch und chromatisch korrigierten Elektronenmikroskops. Optik 57, 7394.Google Scholar
Born, M. & Wolf, E. (1980). Principles of Optics. Cambridge: Cambridge University Press.
Coene, W. & Jansen, A.J.E.M. (1992). Image delocalisation and high resolution transmission electron microscopic imaging with a field emission gun. Scan Microsc 6(Suppl.), 379403.Google Scholar
Coene, W., Janssen, G., Op de Beeck, M., & Van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69, 37433746.Google Scholar
Coene, W.M.J., Thust, A., Op de Beeck, M., & Van Dyck, D. (1996). Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109135.Google Scholar
Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E., & Lupini, A.R. (2001). Progress in aberration-corrected scanning transmission electron microscopy. J Microsc 50, 177185.Google Scholar
Eisenhandler, C.B. & Siegel, B.M. (1966). Imaging of single atoms with the electron microscope by phase contrast. J Appl Phys 37, 16131619.Google Scholar
Fey, G. (1980). Electric power supply for an electron-optical corrector. Optik 55, 5565.Google Scholar
Fujimoto, F. (1978). Periodicity of crystal structure images in electron microscopy with crystal thickness. Phys Status Solidi A 45, 99106.Google Scholar
Gabor, D. (1949). Microscopy by reconstructed wave-fronts. Proc Roy Soc A 197, 454487.Google Scholar
Haider, M., Braunshausen, G., & Schwan E. (1995). Correction of the spherical aberration of a 200 kV TEM by means of a Hexapole-corrector. Optik 99, 167179.Google Scholar
Haider, M., Rose, H., Uhlemann, S., Kabius, B., & Urban, K. (1998a). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Elect Microsc 47, 395405.Google Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., & Urban, K. (1998b). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., & Urban, K. (1998c). Electron microscopy image enhanced. Nature 392, 768769.Google Scholar
Heinemann, K. (1971). In-situ measurement of objective lens data of a high-resolution electron microscope. Optik 34, 113128.Google Scholar
Heinzerling, J. (1976). A magnetic flux stabilizer for the objective lens of a corrected electron microscope. J Phys E 9, 131134.Google Scholar
Hely, H. (1982a). Messungen an einem verbesserten korrigierten Elektronenmikroskop. Optik 60, 353370.Google Scholar
Hely, H. (1982b). Technologische Voraussetzungen für die Verbesserung der Korrektur von Elektronenlinsen. Optik 60, 307326.Google Scholar
Hirsch, P., Howie, A., Nicholson, R., Pashley, D.W., & Whelan, M.J. (1967). Electron Microscopy of Thin Crystals. London: Butterworths.
Hosokawa, F., Tomita, T., Naruse, M., Honda, T., Hartel, P., & Haider, M. (2003). A spherical aberration-corrected 200 kV TEM. J Elect Microsc 52, 310.Google Scholar
Hutchison, J.L., Titchmarsh, J.M., Cockayne, D.J.H., Möbus, G., Hetherington, C.J.D., Doole, R.C., Hosokawa, F., Hartel, P., & Haider, M. (2002). A CS corrected HRETM: Initial applications in materials science. JEOL News 37E, 25.Google Scholar
Jia, C.L., Lentzen, M., & Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870873.Google Scholar
Jia, C.L., Lentzen, M., & Urban, K. (2004). High-resolution transmission electron microscopy using negative spherical aberration. Microsc Microanal 10, 174184.Google Scholar
Jia, C.L. & Urban, K. (2004). Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303, 20012004.Google Scholar
Kambe, K., Lehmpfuhl, G., & Fujimoto, G. (1974). Interpretation of electron channeling by the dynamical theory of electron diffraction. Z Naturforsch A 29, 10341044.Google Scholar
Kirkland, A.I., Titchmarsh, J.M., Hutchison, J.L., Cockayne, D.J.H., Hetherington, C.J.D., Doole, R.C., Sawada, H., Haider, M., & Hartel, P. (2004). A double aberration corrected energy filtered HREM/STEM. JEOL News 39, 25.Google Scholar
Kisielowski, C., Hetherington, C.J.D., Wang, Y.C., Kilaas, R., O'Keefe, M.A., & Thust, A. (2001). Imaging columns of the light elements carbon, nitrogen and oxygen with sub Ångstrom resolution. Ultramicroscopy 89, 243263.Google Scholar
Koops, H., Kuck, G., & Scherzer, O. (1976). Erprobung eines elektronenoptischen Aplanators. Optik 48, 225236.Google Scholar
Kuck, G. (1979). Erprobung eines elektronenoptischen Korrektivs für Farb- und Öffnungsfehler. Dissertation. Darmstadt: Technical University of Darmstadt.
Lehmann, M. (2000). Determination and correction of the coherent wave aberration from a single off-axis electron hologram by means of a genetic algorithm. Ultramicroscopy 85, 165182.Google Scholar
Lehmann, M., Geiger, D., & Lichte, H. (2005). First experiences using electron holography with a Cs-corrected TEM. Microsc Microanal 11(Suppl. 2), 21462147.Google Scholar
Leith, E.N. & Upatnieks, J. (1962). Reconstructed wavefronts and communication theory. J Opt Soc Am 52, 11231130.Google Scholar
Leith, E.N. & Upatnieks, J. (1963). Wavefront reconstruction with continuous-tone objects. J Opt Soc Am 53, 13771381.Google Scholar
Leith, E.N. & Upatnieks, J. (1964). Wavefront reconstruction with diffused illumination and three-dimensional objects. J Opt Soc Am 54, 12951301.Google Scholar
Lentzen, M. (2004). The tuning of a Zernike phase plate with defocus and variable spherical aberration and its use in HRTEM imaging. Ultramicroscopy 99, 211220.Google Scholar
Lentzen, M., Jahnen, B., Jia, C.L., Thust, A., Tillmann, K., & Urban, K. (2002). High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92, 233242.Google Scholar
Lentzen, M. & Urban, K. (2000). Reconstruction of the projected crystal potential in transmission electron microscopy by means of a maximum-likelihood refinement algorithm. Acta Cryst A 56, 235247.Google Scholar
Lichte, H. (1986). Electron holography approaching atomic resolution. Ultramicroscopy 20, 293304.Google Scholar
Lichte, H. (1991). Optimum focus for taking electron holograms. Ultramicroscopy 38, 1322.Google Scholar
O'Keefe, M.A. (2000). The optimum CS condition for high-resolution transmission electron microscopy. Microsc Microanal 6, 10361037.Google Scholar
O'Keefe, M.A., Hetherington, C.J.D., Wang, Y.C., Nelson, E.C., Turner, J.H., Kisielowski, C., Malm, J.-O., Mueller, R., Ringnalda, J., Pan, M., & Thust, A. (2001). Sub-ångstrom high-resolution transmission electron microscopy at 300 kV. Ultramicroscopy 89, 215241.Google Scholar
Rose, H. (1971). Elektronenoptische Aplanate. Optik 34, 287313.Google Scholar
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85, 1924.Google Scholar
Rose, H. (1994). Correction of aberrations, a promising means for improving the spatial and energy resolution of energy-filtering electron microscopes. Ultramicroscopy 56, 1125.Google Scholar
Saxton, W.O. (1978). Computer Techniques for Image Processing in Electron Microscopy. New York: Academic Press.
Saxton, W.O. (1988). Accurate atom positions from focal and tilted beam series of high resolution electron micrographs. In Proceedings of the 6th Pfefferkorn Conference, Image and Signal Processing in Electron Microscopy, Hawkes, P.W., Ottensmeyer, P.P., Saxton, W.O. & Rosenfeld, A. (Eds.), pp. 213224. Chicago: Scanning Microscopy International.
Saxton, W.O. (1994). What is the focus variation method? Is it new? Is it direct? Ultramicroscopy 55, 171181.Google Scholar
Saxton, W.O. (2000). A new way of measuring microscope aberrations. Ultramicroscopy 81, 4145.Google Scholar
Scherzer, O. (1936). Über einige Fehler von Elektronenlinsen. Z Phys 101, 593603.Google Scholar
Scherzer, O. (1947). Sphärische und chromatische Korrektur von Elektronen-Linsen. Optik 2, 114132.Google Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20, 2029.Google Scholar
Scherzer, O. (1970). Die Strahlenschädigung der Objekte als Grenze für die hochauflösende Elektronenmikroskopie. Berichte der Bunsengesellschaft 74, 11541167.Google Scholar
Schiske, P. (1968). Zur Frage der Bildrekonstruktion durch Fokusreihen. In Proceedings of the 4th Regional Congress on Electron Microscopy, vol. 1, pp. 145146. Rome, Italy: Tipografia Poliglotta Vaticana.
Schiske, P. (2002). Image reconstruction by means of focus series. J Microsc 207, 154.Google Scholar
Tanaka, N., Yamasaki, J., Fuchi, S., & Takeda, Y. (2004). First observation of InxGa1-xAs quantum dots in GaP by spherical-aberration-corrected HRTEM in comparison with ADF-STEM and conventional HRTEM. Microsc Microanal 10, 139145.Google Scholar
Tanaka, N., Yamasaki, J., Usuda, K., & Ikarashi, N. (2003). First observation of SiO2/Si(100) interfaces by spherical aberration-corrected high-resolution transmission electron microscopy. J Elect Microsc 52, 6973.Google Scholar
Thust, A., Coene, W.M.J., Op de Beeck, M., & Van Dyck, D. (1996a). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211230.Google Scholar
Thust, A., Overwijk, M.H.F., Coene, W.M.J., & Lentzen, M. (1996b). Numerical correction of lens aberrations in phase-retrieval HRTEM. Ultramicroscopy 64, 249264.Google Scholar
Tillmann, K., Thust, A., & Urban, K. (2004). Spherical aberration correction in tandem with exit-plane wave function reconstruction: Interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microsc Microanal 10, 185198.Google Scholar
Tonomura, A. (1993). Electron Holography. Berlin: Springer.
Typke, D. & Dierksen, K. (1995). Determination of image aberrations in high-resolution electron microscopy using diffractograms and cross-correlation methods. Optik 99, 155166.Google Scholar
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.Google Scholar
Urban, K., Kabius, B., Haider, M., & Rose, H. (1999). A way to higher resolution: Spherical-aberration correction in a 200 kV transmission electron microscope. J Elect Microsc 48, 821826.Google Scholar
Van Dyck, D., Op de Beeck, M., & Coene, W. (1993). A new approach to object wavefunction reconstruction in electron microscopy. Optik 93, 103107.Google Scholar
Wang, Y.C., Fitzgerald, A., Nelson, E.C., Song, C., O'Keefe, M.A., & Kisielowski, C. (1999). Effect of correction of the 3-fold astigmatism on HREM lattice imaging with information below 100 pm. In Proceedings of the 57th Annual Microscopy Society of America Meeting, pp. 822823. New York: Springer-Verlag.
Zemlin, F., Weiss, K., Schiske, P., Kunath, W., & Herrmann, K.-H. (1978). Coma-free alignment of high-resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 4960.Google Scholar
Zernike, F. (1942a). Phase contrast, a new method for the microscopic observation of transparent objects, Part I. Physica 9, 686698.Google Scholar
Zernike, F. (1942b). Phase contrast, a new method for the microscopic observation of transparent objects, Part II. Physica 9, 974986.Google Scholar
Zernike, F. (1955). How I discovered phase contrast. Science 121, 345349.Google Scholar