Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T16:06:11.541Z Has data issue: false hasContentIssue false

Quantitative Simulation of Four-dimensional STEM Datasets

Published online by Cambridge University Press:  30 July 2020

Andreas Beyer
Affiliation:
Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, Marburg, Hessen, Germany
Saleh Firoozabadi
Affiliation:
Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, Marburg, Hessen, Germany
Damien Heimes
Affiliation:
Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, Marburg, Hessen, Germany
Pirmin Kükelhan
Affiliation:
Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, Marburg, Hessen, Germany
Tim Grieb
Affiliation:
Universität Bremen, Germany Institut für Festkörperphysik Department for Electron Microscopy, Bremen, Bremen, Germany
Florian Krause
Affiliation:
Universität Bremen, Germany Institut für Festkörperphysik Department for Electron Microscopy, Bremen, Bremen, Germany
Marco Schowalter
Affiliation:
Universität Bremen, Germany Institut für Festkörperphysik Department for Electron Microscopy, Bremen, Bremen, Germany
Hoel Laurent Robert
Affiliation:
Forschungszentrum Jülich, Jülich, Nordrhein-Westfalen, Germany
Knut Müller-Caspary
Affiliation:
Forschungszentrum Jülich, Jülich, Nordrhein-Westfalen, Germany
Andreas Rosenauer
Affiliation:
Universität Bremen, Germany Institut für Festkörperphysik Department for Electron Microscopy, Bremen, Bremen, Germany
Kerstin Volz
Affiliation:
Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, Marburg, Hessen, Germany

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Four-dimensional Scanning Transmission Electron Microscopy (4D-STEM): New Experiments and Data Analyses for Determining Materials Functionality and Biological Structures
Copyright
Copyright © Microscopy Society of America 2020

References

Beyer, A., Belz, J., Knaub, N., Jandieri, K. & Volz, K. (2016). Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging. Ultramicroscopy 169, 110. http://linkinghub.elsevier.com/retrieve/pii/S0304399116300845.10.1016/j.ultramic.2016.06.006CrossRefGoogle ScholarPubMed
Müller-Caspary, K., Oppermann, O., Grieb, T., Krause, F. F., Rosenauer, A., Schowalter, M., Mehrtens, T., Beyer, A., Volz, K. & Potapov, P. (2016). Materials characterisation by angle-resolved scanning transmission electron microscopy. Scientific Reports 6, 37146. http://www.nature.com/articles/srep37146.10.1038/srep37146CrossRefGoogle ScholarPubMed
Oelerich, J. O., Duschek, L., Belz, J., Beyer, A., Baranovskii, S. D. & Volz, K. (2017). STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens. Ultramicroscopy 177, 9196. http://linkinghub.elsevier.com/retrieve/pii/S030439911630300X.10.1016/j.ultramic.2017.03.010CrossRefGoogle ScholarPubMed
Ophus, C. (2019). Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microscopy and Microanalysis 120. https://www.cambridge.org/core/product/identifier/S1431927619000497/type/journal_article.Google ScholarPubMed
Rosenauer, A. & Schowalter, M. (2008). STEMSIM - A New Software Tool for Simulation of STEM. Microscopy of Semiconducting Materials 2007 120, 170172. http://www.springerlink.com/index/j2344u6684318134.pdf (Accessed December 8, 2011).10.1007/978-1-4020-8615-1_36CrossRefGoogle Scholar