Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T02:39:10.039Z Has data issue: false hasContentIssue false

Real-Time Image Registration via A Deep Leaning Approach for Correlative X-ray and Electron Microscopy

Published online by Cambridge University Press:  30 July 2021

Yanqi Luo
Affiliation:
Argonne National Laboratory, United States
Nestor Zaluzec
Affiliation:
Argonne National Laboratory / Photon Science Directorate, Bolingbrook, Illinois, United States
Mathew Cherukara
Affiliation:
Argonne National Laboratory, United States
Xiaolan Wu
Affiliation:
Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, China, United States
Si Chen
Affiliation:
Argonne National Laboratory, Lemont, Illinois, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Multi-Modal Multi-Dimensional Microscopy
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Nguyen, T., Chen, S. W., Shivakumar, S. S., Taylor, C. J., and Kumar, V., “Unsupervised Deep Homography: A Fast and Robust Homography Estimation Model,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 23462353, 2018, doi: 10.1109/LRA.2018.2809549.CrossRefGoogle Scholar
Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J., and Dalca, A. V., “VoxelMorph: A learning framework for deformable medical image registration,” IEEE Trans. Med. Imaging, vol. 38, no. 8, pp. 17881800, 2018.CrossRefGoogle Scholar
Thévenaz, P., Ruttimann, U. E., and Unser, M., “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process., vol. 7, no. 1, pp. 2741, 1998, doi: 10.1109/83.650848.CrossRefGoogle ScholarPubMed
Low, D. G., “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., pp. 91110, 2004, [Online]. Available: https://www.cs.ubc.ca/∼lowe/papers/ijcv04.pdf.CrossRefGoogle Scholar
Zhao, A., Balakrishnan, G., Durand, F., Guttag, J. V., and Dalca, A. V., “Data augmentation using learned transformations for one-shot medical image segmentation,” arXiv, 2019.Google Scholar
Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., and Kalinin, A. A., “Albumentations: Fast and Flexible Image Augmentations,” Information, vol. 11, no. 2, pp. 120, 2020.CrossRefGoogle Scholar
Thévenaz, P., Ruttimann, U. E., and Unser, M., “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process., vol. 7, no. 1, pp. 2741, 1998, doi: 10.1109/83.650848.CrossRefGoogle ScholarPubMed
Low, D. G., “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., pp. 91110, 2004, [Online]. Available: https://www.cs.ubc.ca/∼lowe/papers/ijcv04.pdf.CrossRefGoogle Scholar