Article contents
The Role of Monte Carlo Calculations In Quantitative Analysis
Published online by Cambridge University Press: 02 July 2020
Extract
In conventional quantitative electron microprobe analysis, methods like ZAF and φ(ρz), are used to convert x-ray intensity data to chemical composition utilizing equations that describe electron solid interactions, the x-ray generation process, absorption of the generated x-rays and secondary fluorescence effects. These equations capture the overall response of a sample or standard rather than consider the fate of individual electrons over time. For example, f(χ) is simply the ratio of x-rays emitted to the number generated. While for the most part these methods are built on solid physical models, the models were never exact enough to completely match measured data. Consequently, they have been modified by various adjustable parameters to ensure a high level of accuracy for a wide variety of systems and experimental conditions. However, since most of the adjustments were based on data taken at normal incidence, there has always been a question of how to obtain accurate results from tilted samples.
- Type
- Problem Elements and Spectrometry Problems in X-Ray Microanalysis
- Information
- Copyright
- Copyright © Microscopy Society of America
References
- 2
- Cited by