Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T09:20:44.726Z Has data issue: false hasContentIssue false

Room Temperature Synthesis of Cu2O Nanospheres: Optical Properties and Thermal Behavior

Published online by Cambridge University Press:  21 October 2014

Daniela Nunes*
Affiliation:
Departamento de Ciência dos Materiais, CENIMAT/I3N, Faculdade de Ciências e Tecnologia (FCT) Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica, Portugal
Lídia Santos
Affiliation:
Departamento de Ciência dos Materiais, CENIMAT/I3N, Faculdade de Ciências e Tecnologia (FCT) Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica, Portugal
Paulo Duarte
Affiliation:
Departamento de Ciência dos Materiais, CENIMAT/I3N, Faculdade de Ciências e Tecnologia (FCT) Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica, Portugal
Ana Pimentel
Affiliation:
Departamento de Ciência dos Materiais, CENIMAT/I3N, Faculdade de Ciências e Tecnologia (FCT) Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica, Portugal
Joana V. Pinto
Affiliation:
Departamento de Ciência dos Materiais, CENIMAT/I3N, Faculdade de Ciências e Tecnologia (FCT) Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica, Portugal
Pedro Barquinha
Affiliation:
Departamento de Ciência dos Materiais, CENIMAT/I3N, Faculdade de Ciências e Tecnologia (FCT) Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica, Portugal
Patrícia A. Carvalho
Affiliation:
ICEMS, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Elvira Fortunato*
Affiliation:
Departamento de Ciência dos Materiais, CENIMAT/I3N, Faculdade de Ciências e Tecnologia (FCT) Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica, Portugal
Rodrigo Martins*
Affiliation:
Departamento de Ciência dos Materiais, CENIMAT/I3N, Faculdade de Ciências e Tecnologia (FCT) Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica, Portugal
Get access

Abstract

The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.

Type
SPMicros Special Section
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou-Ras, D., Jahn, U., Nichterwitz, M., Unold, T., Klaer, J. & Schock, H.W. (2010). Combined electron backscatter diffraction and cathodoluminescence measurements on stacks and thin-film solar cells. J Appl Phys 107(1), 014311-1–014311-8.CrossRefGoogle Scholar
Al-Ghamdi, A.A., Al-Hazmi, F., Al-Hartomy, O., El-Tantawy, F. & Yakuphanoglu, F. (2012). A novel synthesis and optical properties of cuprous oxide nano octahedrons via microwave hydrothermal route. J Sol-Gel Sci Technol 63(1), 187193.CrossRefGoogle Scholar
Aydın, C., Benhaliliba, M., Al-Ghamdi, A., Gafer, Z., El-Tantawy, F. & Yakuphanoglu, F. (2013). Determination of optical band gap of ZnO:ZnAl2O4 composite semiconductor nanopowder materials by optical reflectance method. J Electroceram 31(1–2), 265270.CrossRefGoogle Scholar
Balamurugan, B. & Mehta, B.R. (2001). Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films 396(1–2), 9096.CrossRefGoogle Scholar
Bijani, S., Gabás, M., Martínez, L., Ramos-Barrado, J.R., Morales, J. & Sánchez, L. (2007). Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries. Thin Solid Films 515(13), 55055511.CrossRefGoogle Scholar
Cao, Y., Fan, J., Bai, L., Yuan, F. & Chen, Y. (2009). Morphology evolution of Cu2O from octahedra to hollow structures. Cryst Growth Des 10(1), 232236.CrossRefGoogle Scholar
Cavalcante, L., Longo, V., Sczancoski, J., Almeida, M., Batista, A., Varela, J., Orlandi, M.O., Longo, E. & Li, M.S. (2012). Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. Cryst Eng Comm 14(3), 853868.CrossRefGoogle Scholar
Chang, I.C., Chen, P.-C., Tsai, M.-C., Chen, T.-T., Yang, M.-H., Chiu, H.-T. & Lee, C.-Y. (2013). Large-scale synthesis of uniform Cu2O nanocubes with tunable sizes by in-situ nucleation. Cryst Eng Comm 15(13), 23632366.CrossRefGoogle Scholar
Chang, Y., Teo, J.J. & Zeng, H.C. (2004). Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21(3), 10741079.CrossRefGoogle Scholar
Chen, W., Li, L., Peng, Q. & Li, Y. (2012). Polyol synthesis and chemical conversion of Cu2O nanospheres. Nano Res 5(5), 320326.CrossRefGoogle Scholar
Chen, Z.-Z., Shi, E.-W., Zheng, Y.-Q., Li, W.-J., Xiao, B. & Zhuang, J.-Y. (2003). Growth of hex-pod-like Cu2O whisker under hydrothermal conditions. J Cryst Growth 249(1–2), 294300.CrossRefGoogle Scholar
Cho, Y.S. & Huh, Y.D. (2009). Preparation of CuO hollow spheres by oxidation of Cu microspheres. Bull Korean Chem Soc 30(6), 14101412.Google Scholar
Choudhury, B., Dey, M. & Choudhury, A. (2013). Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int Nano Lett 3(1), 18.CrossRefGoogle Scholar
Deki, S., Akamatsu, K., Yano, T., Mizuhata, M. & Kajinami, A. (1998). Preparation and characterization of copper(I) oxide nanoparticles dispersed in a polymer matrix. J Mater Chem 8(8), 18651868.CrossRefGoogle Scholar
Djurišić, A.B., Leung, Y.H., Tam, K.H., Ding, L., Ge, W.K., Chen, H.Y. & Gwo, S. (2006). Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Appl Phys Lett 88(10), 103107-1–103107-3.CrossRefGoogle Scholar
Fan, H.J., Gçsele, U. & Zacharias, M. (2007). Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review. Small 3(10), 16601671.CrossRefGoogle ScholarPubMed
Figueiredo, V., Elangovan, E., Gonçalves, G., Barquinha, P., Pereira, L., Franco, N., Alves, E., Martins, R. & Fortunato, E. (2008). Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Appl Surf Sci 254(13), 39493954.CrossRefGoogle Scholar
Figueiredo, V., Elangovan, E., Gonçalves, G., Franco, N., Alves, E., Park, S.H.K., Martins, R. & Fortunato, E. (2009). Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature. Phys Status Solidi (a) 206(9), 21432148.CrossRefGoogle Scholar
Figueiredo, V., Pinto, J.V., Deuermeier, J., Barros, R., Alves, E., Martins, R. & Fortunato, E. (2013). P-type CuxO thin-film transistors produced by thermal oxidation. J Display Technol 9(9), 735740.CrossRefGoogle Scholar
Filipič, G. & Cvelbar, U. (2012). Copper oxide nanowires: A review of growth. Nanotechnology 23(19), 194001.CrossRefGoogle ScholarPubMed
Firmansyah, D.A., Kim, T., Kim, S., Sullivan, K., Zachariah, M.R. & Lee, D. (2009). Crystalline phase reduction of cuprous oxide (Cu2O) nanoparticles accompanied by a morphology change during ethanol-assisted spray pyrolysis. Langmuir 25(12), 70637071.CrossRefGoogle ScholarPubMed
Fultz, B. & Howe, J. (2008). Diffraction and the X-ray powder diffractometer. In Transmission Electron Microscopy and Diffractometry of Materials , pp. 159. Berlin, Heidelberg: Springer.Google Scholar
Gangopadhyay, P., Kesavamoorthy, R., Bera, S., Magudapathy, P., Nair, K., Panigrahi, B. & Narasimhan, S. (2005). Optical absorption and photoluminescence spectroscopy of the growth of silver nanoparticles. Phys Rev Lett 94(4), 047403.CrossRefGoogle ScholarPubMed
Garuthara, R. & Siripala, W. (2006). Photoluminescence characterization of polycrystalline n-type Cu2O films. J Lumin 121(1), 173178.CrossRefGoogle Scholar
Geng, B., Liu, J., Zhao, Y. & Wang, C. (2011). A room-temperature chemical route to homogeneous core-shell Cu2O structures and their application in biosensors. Cryst Eng Comm 13(2), 697701.CrossRefGoogle Scholar
Gfroerer, T.H. (2000). Photoluminescence in analysis of surfaces and interfaces. In Encyclopedia of Analytical Chemistry, Meyers, R.A. (Ed.), pp. 92099231. Chichester: John Wiley & Sons Ltd.Google Scholar
Gonçalves, A.M.B., Campos, L.C., Ferlauto, A.S. & Lacerda, R.G. (2009). On the growth and electrical characterization of CuO nanowires by thermal oxidation. J Appl Phys 106(3), 034303-1–034303-5.CrossRefGoogle Scholar
Gu, Q. & Wang, B. (2010). Correlation between structural defects and optical properties of Cu2O nanowires grown by thermal oxidation. arXiv Preprint arXiv:1012.5338, 111.Google Scholar
Gu, Y.-E., Su, X., Du, Y. & Wang, C. (2010). Preparation of flower-like Cu2O nanoparticles by pulse electrodeposition and their electrocatalytic application. Appl Surf Sci 256(20), 58625866.CrossRefGoogle Scholar
Hara, M., Kondo, T., Komoda, M., Ikeda, S., Kondo, J.N., Domen, K., Hara, M., Shinohara, K. & Tanaka, A. (1998). Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 3, 357358.CrossRefGoogle Scholar
He, P., Shen, X. & Gao, H. (2005). Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption. J Colloid Interface Sci 284(2), 510515.CrossRefGoogle ScholarPubMed
Heng, B., Xiao, T., Tao, W., Hu, X., Chen, X., Wang, B., Sun, D. & Tang, Y. (2012). Zn doping-induced shape evolution of microcrystals: The case of cuprous oxide. Cryst Growth Des 12(8), 39984005.CrossRefGoogle Scholar
Hsu, Y.-K., Yu, C.-H., Chen, Y.-C. & Lin, Y.-G. (2012). Hierarchical Cu2O photocathodes with nano/microspheres for solar hydrogen generation. RSC Adv 2(32), 1245512459.CrossRefGoogle Scholar
Hu, L., Huang, Y., Zhang, F. & Chen, Q. (2013). CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 5(10), 41864190.CrossRefGoogle ScholarPubMed
Hu, Y., Huang, X., Wang, K., Liu, J., Jiang, J., Ding, R., Ji, X. & Li, X. (2010). Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes. J Solid State Chem 183(3), 662667.CrossRefGoogle Scholar
Ito, T., Yamaguchi, H., Okabe, K. & Masumi, T. (1998). Single-crystal growth and characterization of Cu2O and CuO. J Mater Sci 33(14), 35553566.CrossRefGoogle Scholar
Jana, S. & Biswas, P.K. (1997). Optical characterization of in-situ generated Cu2O excitons in solution derived nano-zirconia film matrix. Mater Lett 32(4), 263270.CrossRefGoogle Scholar
Jiang, L., You, T., Yin, P., Shang, Y., Zhang, D., Guo, L. & Yang, S. (2013). Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: Charge-transfer and electromagnetic enhancement. Nanoscale 5(7), 27842789.CrossRefGoogle ScholarPubMed
Karabudak, E., Yuce, E., Schlautmann, S., Hansen, O., Mul, G. & Gardeniers, H. (2012). On the pathway of photoexcited electrons: Probing photon-to-electron and photon-to-phonon conversions in silicon by ATR-IR. Phys Chem Chem Phys 14(31), 1088210885.CrossRefGoogle ScholarPubMed
Kevin, M., Ong, W.L., Lee, G.H. & Ho, G.W. (2011). Formation of hybrid structures: Copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701.CrossRefGoogle ScholarPubMed
Koffyberg, F.P. & Benko, F.A. (1982). A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO. J Appl Phys 53(2), 11731177.CrossRefGoogle Scholar
Korshunov, A.V. & Il’in, A.P. (2009). Oxidation of copper nanopowders on heating in air. Russ J Appl Chem 82(7), 11641171.CrossRefGoogle Scholar
Kraus, W. & Nolze, G. (1996). POWDER CELL – A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Cryst 29(3), 301303.CrossRefGoogle Scholar
Kubelka, P. & Munk, F. (1931). Ein beitrag zur optik der farbanstriche. Z Tech Phys (Leipzig) 12, 593601.Google Scholar
Kumar, V., Masudy-Panah, S., Tan, C.C., Wong, T.K.S., Chi, D.Z. & Dalapati, G.K. (2013). Copper oxide based low cost thin film solar cells. In Nanoelectronics Conference, 2013 IEEE 5th International, January 2013, Singapore: INEC, pp. 443–445.CrossRefGoogle Scholar
Lupan, O., Pauporté, T., Chow, L., Viana, B., Pellé, F., Ono, L.K., Roldan Cuenya, B. & Heinrich, H. (2010). Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl Surf Sci 256(6), 18951907.CrossRefGoogle Scholar
Meng, F. & Jin, S. (2011). The solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano Lett 12(1), 234239.CrossRefGoogle ScholarPubMed
Mittiga, A., Salza, E., Sarto, F., Tucci, M. & Vasanthi, R. (2006). Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl Phys Lett 88(16), 163502.CrossRefGoogle Scholar
Morales, A.E., Mora, E.S. & Pal, U. (2007). Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev Mex Fıs S 53(5), 1822.Google Scholar
Nakamura, R., Tokozakura, D., Lee, J.G., Mori, H. & Nakajima, H. (2008). Shrinking of hollow Cu2O and NiO nanoparticles at high temperatures. Acta Mater 56(18), 52765284.CrossRefGoogle Scholar
Nunes, D., Pimentel, A., Barquinha, P., Carvalho, P.A., Fortunato, E. & Martins, R. (2014). Cu2O polyhedral nanowires produced by microwave irradiation. J Mater Chem C 2, 60976103.CrossRefGoogle Scholar
Pearson, W.B., Villars, P. & Calvert, L.D. (1985). Pearson’s Handbook of Crystallographic Data for Intermetallic Phases. Ohio: American Society for Metals.Google Scholar
Raidongia, K. & Rao, C.N.R. (2008). Study of the transformations of elemental nanowires to nanotubes of metal oxides and chalcogenides through the Kirkendall effect. J Phys Chem C 112(35), 1336613371.CrossRefGoogle Scholar
Rathmell, A.R., Bergin, S.M., Hua, Y.-L., Li, Z.-Y. & Wiley, B.J. (2010). The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 22(32), 35583563.CrossRefGoogle ScholarPubMed
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671675.CrossRefGoogle ScholarPubMed
Serin, N., Serin, T., Horzum, Ş. & Çelik, Y. (2005). Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Semicond Sci Technol 20(5), 398401.CrossRefGoogle Scholar
Sharma, P. & Bhatti, H.S. (2009). Synthesis of fluorescent hollow and porous Cu2O nanopolyhedras in the presence of poly(vinyl pyrrolidone). Mater Chem Phys 114(2–3), 889896.CrossRefGoogle Scholar
Sharma, P. & Sharma, S.K. (2013). Microscopic investigations of Cu2O nanostructures. J Alloy Comp 557, 152159.CrossRefGoogle Scholar
Shinagawa, T., Onoda, M., Fariza, B.M., Sasano, J. & Izaki, M. (2013). Annealing effects and photoelectric properties of single-oriented Cu2O films electrodeposited on Au(111)/Si(100) substrates. J Mater Chem A 1(32), 91829188.CrossRefGoogle Scholar
Sui, Y., Zhang, Y., Fu, W., Yang, H., Zhao, Q., Sun, P., Ma, D., Yuan, M., Li, Y. & Zou, G. (2009). Low-temperature template-free synthesis of Cu2O hollow spheres. J Cryst Growth 311(8), 22852290.CrossRefGoogle Scholar
Sun, S., Zhang, X., Song, X., Liang, S., Wang, L. & Yang, Z. (2012). Bottom-up assembly of hierarchical Cu2O nanospheres: Controllable synthesis, formation mechanism and enhanced photochemical activities. Cryst Eng Comm 14(10), 35453553.CrossRefGoogle Scholar
Vila, M., Diaz-Guerra, C. & Piqueras, J. (2010). Optical and magnetic properties of CuO nanowires grown by thermal oxidation. J Phys D Appl Phys 43(13), 135403.CrossRefGoogle Scholar
Wang, C.-M., Genc, A., Cheng, H., Pullan, L., Baer, D.R. & Bruemmer, S.M. (2014 a). In-Situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles. Sci Rep 4, 16.Google ScholarPubMed
Wang, W., Tu, Y., Zhang, P. & Zhang, G. (2011). Surfactant-assisted synthesis of double-wall Cu2O hollow spheres. Cryst Eng Comm 13(6), 18381842.CrossRefGoogle Scholar
Wang, Y., Miska, P., Pilloud, D., Horwat, D., Mücklich, F. & Pierson, J.F. (2014 b). Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing. J Appl Phys 115(7), 073505-1–073505-5.Google Scholar
Wei, H.M., Gong, H.B., Chen, L., Zi, M. & Cao, B.Q. (2012). Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. J Phys Chem C 116(19), 1051010515.CrossRefGoogle Scholar
Wei, M. & Huo, J. (2010). Preparation of Cu2O nanorods by a simple solvothermal method. Mater Chem Phys 121(1–2), 291294.CrossRefGoogle Scholar
Wu, W.-T., Wang, Y., Shi, L., Pang, W., Zhu, Q., Xu, G. & Lu, F. (2006). Propeller-like multicomponent microstructures: Self-assemblies of nanoparticles of poly(vinyl alcohol)-coated Ag and/or Cu2O. J Phys Chem B 110(30), 1470214708.CrossRefGoogle ScholarPubMed
Yang, H., Ouyang, J., Tang, A., Xiao, Y., Li, X., Dong, X. & Yu, Y. (2006). Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles. Mater Res Bull 41(7), 13101318.CrossRefGoogle Scholar
Yang, L. & Kruse, B. (2004). Revised Kubelka–Munk theory. I. Theory and application. J Opt Soc Am A 21(10), 19331941.CrossRefGoogle Scholar
Zhang, D. (2013). Synergetic effects of Cu2O photocatalyst with titania and enhanced photoactivity under visible irradiation. Acta Chim Slov 6(1), 141149.CrossRefGoogle Scholar
Zhang, J., Liu, J., Peng, Q., Wang, X. & Li, Y. (2006). Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem Mater 18(4), 867871.CrossRefGoogle Scholar
Zhang, L. & Wang, H. (2011). Cuprous oxide nanoshells with geometrically tunable optical properties. ACS Nano 5(4), 32573267.CrossRefGoogle ScholarPubMed
Zhou, D.-L., Feng, J.-J., Cai, L.-Y., Fang, Q.-X., Chen, J.-R. & Wang, A.-J. (2014). Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing. Electrochim Acta 115, 103108.CrossRefGoogle Scholar
Zhu, H., Wang, J. & Xu, G. (2008). Fast synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus. Cryst Growth Des 9(1), 633638.CrossRefGoogle Scholar

Nunes Supplementary Material

Supplementary Material

Download Nunes Supplementary Material(Video)
Video 71.7 MB

Nunes Supplementary Material

Supplementary Material

Download Nunes Supplementary Material(Video)
Video 49.6 MB

Nunes Supplementary Material

Supplementary Material

Download Nunes Supplementary Material(Video)
Video 24.3 MB