Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:28:30.407Z Has data issue: false hasContentIssue false

Sertoli Cell Morphological Alterations in Albino Rats Treated with Etoposide during Prepubertal Phase

Published online by Cambridge University Press:  16 May 2008

Taiza Stumpp*
Affiliation:
Laboratory of Developmental Biology, Federal University of Sao Paulo, 740 Botucatu, Ed. Leitao da Cunha, Sao Paulo – SP 04023-900, Brazil
Edna Freymuller
Affiliation:
Centre of Electron Microscopy, Federal University of Sao Paulo, 862 Botucatu, Ed. De Ciencias Biomedicas, Sao Paulo – SP 04023-062, Brazil
Sandra M. Miraglia
Affiliation:
Laboratory of Developmental Biology, Federal University of Sao Paulo, 740 Botucatu, Ed. Leitao da Cunha, Sao Paulo – SP 04023-900, Brazil
*
Corresponding author. E-mail: taiza.stumpp@gmail.com
Get access

Abstract

Sertoli cells are very important to spermatogenesis homeostasis because they control germ cell proliferation, differentiation, and death. Damages to Sertoli cells cause germ cell death and affect fertility. Etoposide is a potent chemotherapeutic drug largely used against a variety of cancers. However, this drug also kills normal cells, especially those undergoing rapid proliferation. In the testis, etoposide acts predominantly on intermediate and type B spermatogonia. Etoposide was shown to permanently alter Sertoli cell function when administered to prepubertal rats. Based on this, we decided to investigate whether etoposide can affect Sertoli cell morphology. For this, 25-day-old rats were treated with etoposide during 8 consecutive days and killed at 32, 45, 64, 127, and 180 days old. Testes were fixed in Bouin's liquid or in a mixture of 2.5% glutaraldehyde and 2% formaldehyde for analysis under light and electron microscopes, respectively. Sertoli cells showed morphological alterations such as the presence of chromatin clumps close to the nuclear membrane, nucleus displacement, and cytoplasmic vacuolization. Some Sertoli cells also showed nuclear and cytoplasmic degenerative characteristics, suggesting that etoposide causes severe damages to Sertoli cell.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrieu, M.N., Kurtman, C., Hicsonmez, A., Ozbilgin, K., Eser, E. & Erdemli, E. (2005). In vivo study to evaluate the protective effects of amifostine on radiation-induced damage of testis tissue. Oncology 69, 4451.Google Scholar
Arnold, A.M. (1979). Podophyllotoxin derivative VP 16-213. Cancer Chem Pharmacol 3, 7180.Google Scholar
Atanassova, N.N., Walker, M., McKinnell, C., Fisher, J.S. & Sharpe, R.M. (2005). Evidence that androgens and oestrogens, as well as follicle-stimulating hormone, can alter Sertoli cell number in the neonatal rat. J Endocrinol 184, 107117.CrossRefGoogle ScholarPubMed
Awal, M.A., Kurohmaru, M., Andriana, B.B., Kanai, Y. & Hayashi, Y. (2005). Mono-(2-ethylhexyl) phthalate (MEHP) induces testicular alterations in male guinea pigs at prepubertal stage. Tissue Cell 37, 167175.CrossRefGoogle ScholarPubMed
Billig, H., Fururta, I., Rivier, C., Tapanainem, J., Parvinen, M. & Hsueh, A.J. (1995). Apoptosis in testis germ cells: Developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology 136, 512.CrossRefGoogle ScholarPubMed
Boekelheide, K., Fleming, S.L., Allio, T., Embree-Ku, M.E., Hall, S.J., Johnson, K.J., Kwon, E.J., Patel, S.R., Rasoulpour, R.J., Schoenfeld, H.A. & Thompson, S. (2003). 2,5-hexanedione-induced testicular injury. Ann Rev Pharmacol Toxicol 43, 125147.CrossRefGoogle ScholarPubMed
Bordallo, M.A., Gumaraes, M.M., Pessoa, C.H., Carrico, M.K., Dimetz, T., Gazolla, H.M., Dobbin, J. & Castilho, I.A. (2004). Decreased serum inhibin B/FSH ratio as a marker of Sertoli cell function in male survivors after chemotherapy in childhood and adolescence. J Pediatr Endocrinol Metab 17, 879887.Google Scholar
Caviglia, D., Scarabelli, L. & Palmero, S. (2004). Effects of carnitines on rat sertoli cell protein metabolism. Horm Metab Res 36, 221225.Google Scholar
Cespedes, R.D., Peretsman, S.J., Thompson, I.M. Jr. & Jackson, C. (1995). Protection of the germinal epithelium in the rat from the cytotoxic effects of chemotherapy by a luteinizing hormone-releasing hormone agonist and antiandrogen therapy. Urology 46, 688691.CrossRefGoogle ScholarPubMed
Chapin, R.E., Gray, T.J., Phelps, J.L. & Dutton, S.L. (1988). The effects of mono-(2-ethylhexyl)-phthalate on rat Sertoli cell-enriched primary cultures. Toxicol Appl Pharmacol 92, 467479.Google Scholar
Chen, G.L., Yang, L., Rowe, T.C., Halligan, B.D., Tewey, K.M. & Liu, L.F. (1984). Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 259, 1356013566.CrossRefGoogle ScholarPubMed
Clegg, E.J. (1963). Studies on artificial cryptorchidism: Degenerative and regenerative changes in the germinal epithelium of the rat testis. J Endocrinol 27, 241251.Google Scholar
Creaven, P.J. & Allen, L.M. (1975). EPEG: A new antineoplastic epipodophyllotoxin. Clin Pharmacol Ther 18, 221226.Google Scholar
Dalgaard, M., Nellemann, C., Lam, H.R., Sorensen, I.K. & Ladefoged, O. (2001). The acute effects of mono(2-ethylhexyl)phthalate (MEHP) on testes of prepubertal Wistar rats. Toxicol Lett 122, 6979.Google Scholar
de Oliveira, R.B., Klamt, F., Castro, M.A., Polydoro, M., Zanotto Filho, A., Gelain, D.P., Dal-Pizzol, F. & Noreira, J.C. (2005). Morphological and oxidative alterations on Sertoli cells cytoskeleton due to retinol-induced reactive oxygen species. Mol Cell Biochem 271, 189196.CrossRefGoogle ScholarPubMed
Despras, E., Miccoli, L., Creminon, C., Rouillard, D., Angulo, J.F. & Biard, D.S. (2003). Depletion of KIN17, a human DNA replication protein, increases the radiosensitivity of RKO cells. Radiat Res 159, 748758.Google Scholar
Djakiew, D. & Dym, M. (1988). Pachytene spermatocyte proteins influence Sertoli cell function. Biol Reprod 39, 11931205.CrossRefGoogle ScholarPubMed
Dym, M. & Raj, H.G. (1977). Response of adult rat Sertoli cells and Leydig cells to depletion of luteinizing hormone and testosterone. Biol Reprod 17, 676696.Google Scholar
Freitas, E.F., Cordeiro-Mori, F., Sasso-Cerri, E., Lucas, S.R. & Miraglia, S.M. (2002). Alterations of spermatogenesis in etoposide-treated rats: A stereological study. Interciencia 27, 227235.Google Scholar
Guitton, N., Touzalin, A.M., Sharpe, R.M., Cheng, C.Y., Pinon-Lataillade, G., Meritte, H., Chenal, C. & Jegou, B. (2000). Regulatory influence of germ cells on Sertoli cell function in pre-pubertal rat after acute irradiation of the testis. Int J Androl 23, 332339.Google Scholar
Hakovirta, H., Parvinen, M. & Lahdetie, J. (1993). Effects of etoposide on stage-specific DNA synthesis during rat spermatogenesis. Mutat Res 301, 189193.CrossRefGoogle ScholarPubMed
Hande, K.R. (1998). Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34, 15141520.Google Scholar
Huckins, C. (1965). The duration of spermatogenesis in pre- and postpuberal Wistar rats. Anat Rec 151, 365 (abstract).Google Scholar
Jahnukainen, K., Jahnukainen, T., Salmi, T.T., Svechnikov, K., Eksborg, S. & Söder, O. (2001). Amifostine protects against early but not late toxic effects of doxorubicin in infant rats. Cancer Res 61, 64236427.Google Scholar
Johnston, H., Baker, P.J., Abel, M., Charlton, H.M., Jackson, G., Fleming, L., Kumar, T.R. & O'Saughnessy, P.J. (2004). Regulation of Sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology 145, 318329.Google Scholar
Kamischke, A., Kuhlmann, M., Weinbauer, G.F., Luetjens, M., Yeung, C.H., Kronholz, H.L. & Nieschlag, E. (2003). Gonadal protection from radiation by GnRH antagonist or recombinant human FSH: A controlled trial in a male nonhuman primate (Macaca fascicularis). J Endocrinol 179, 183194.Google Scholar
Kobayashi, D., Goto, A., Maeda, T., Nezu, J., Tsuji, A. & Tamai, I. (2005). OCTN2-mediated transport of carnitine in isolated Sertoli cells. Reproduction 129, 729736.Google Scholar
Lee, J., Richburg, J.H., Shipp, E.B., Meistrich, M.L. & Boekelheide, K. (1999). The FAS system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in Sertoli cell versus germ cell injury of the testis. Endocrinology 140, 852858.Google Scholar
Maeda, T., Goto, A., Kobayashi, D. & Tamai, I. (2007). Transport of organic cations across the blood-testis barrier. Mol Pharm 4, 600607.Google Scholar
Mantovani, A. & Maranghi, F. (2005). Risk assessment of chemicals potentially affecting male fertility. Contraception 72, 308313.CrossRefGoogle ScholarPubMed
Markelewicz, R.J. Jr., Hall, S.J. & Boekelheide, K. (2004). 2,5-hexanedione and carbendazim coexposure synergistically disrupts rat spermatogenesis despite opposing molecular effects on microtubules. Toxicol Sc 80, 92100.Google Scholar
Meistrich, M.L., Wilson, G., Ye, W.S., Thrash, C. & Huhtaniemi, I. (1996). Relationship among hormonal treatments, suppression of spermatogenesis, and testicular protection from chemotherapy-induced damage. Endocrinology 137, 38233831.Google Scholar
Moffit, J.S., Bryant, B.H., Hall, S.J. & Boekelheide, K. (2007). Dose-dependent effects of sertoli cell toxicants 2,5-hexanedione, carbendazim, and mono-(2-ethylhexyl) phthalate in adult rat testis. Toxicol Pathol 35, 719727.Google Scholar
Pinon-Lataillade, G., Masson, C., Bernardino-Sgherri, J., Henriot, V., Mauffrey, P., Frobert, Y., Araneda, S. & Angulo, J.F. (2004). KIN17 encodes an RNA-binding protein and is expressed during mouse spermatogenesis. J Cell Sci 117, 36913702.Google Scholar
Pinon-Lataillade, G., Velez de al Calle, J.F., Viguier-Martinez, M.C., Garnier, D.H., Folliot, R., Maas, S. & Jegou, B. (1988). Influence of germ cells upon Sertoli cells during continuous low-dose rate gamma-irradiation of adult rats. Mol Cell Endocrinol 58, 5163.Google Scholar
Pinon-Lataillade, G., Viguier-Martinez, M.C., Touzalin, A.M., Maas, S. & Jegou, B. (1991). Effect of an acute exposure of rat testes to gamma rays on germ cells and on Sertoli and Leydig cell functions. Reprod Nutr Dev 31, 617629.Google Scholar
Richburg, J.H. & Boekelheide, K. (1996). Mono-(2-ethylhexyl) phthalate rapidly alters both Sertoli cell vimentin filaments and germ cell apoptosis in young rat testes. Toxicol Appl Pharmacol 137, 4250.CrossRefGoogle ScholarPubMed
Richburg, J.H., Johnson, K.J., Schoenfeld, H.A., Meistrich, M.L. & Dix, D.J. (2002). Defining the cellular and molecular mechanisms of toxicant action in the testis. Toxicol Lett 135, 167183.Google Scholar
Richburg, J.H., Nanez, A. & Gao, H. (1999). Participation of the Fas-signaling system in the initiation of germ cell apoptosis in young rat testes after exposure to mono-(2-ethylhexyl) phthalate. Toxicol Appl Pharmacol 160, 271278.Google Scholar
Russell, L.D. (1993). Form, dimensions, and cytology of mammalian Sertoli cells. In The Sertoli Cell, Russell, L.D. & Griswold, M.D. (Eds.), pp. 137. Clearwater, FL: Cache River Press.Google Scholar
Sasso-Cerri, E. & Miraglia, S.M. (2002). In situ demonstration of both TUNEL-labeled germ cell and Sertoli cell in the cimetidine-treated rats. Histol Histopathol 17, 411417.Google Scholar
Sinha, B.K., Haim, N., Dusre, L., Kerrigan, D. & Pommier, Y. (1988). DNA strand breaks produced by etoposide (VP-16,213) in sensitive and resistant human breast tumor cells: Implications for the mechanism of action. Cancer Res 48, 50965100.Google Scholar
Stallard, B.J. & Griswold, M.D. (1990). Germ cell regulation of Sertoli cell transferrin mRNA levels. Mol Endocrinol 4, 393401.Google Scholar
Stumpp, T., Freymüller, E. & Miraglia, S.M. (2006). Sertoli cell function in albino rats treated with etoposide during prepubertal phase. Histochem Cell Biol 126, 353361.Google Scholar
Stumpp, T., Sasso-Cerri, E., Freymüller, E. & Miraglia, S.M. (2004). Apotosis and testicular altertions in albino rats treated with etoposide during prepubertal phase. Anat Rec 279, 611622.Google Scholar
Tan, K.A., De Gendt, K., Atanassova, N., Walker, M., Sharpe, R.M., Saunders, P.T., Denolet, E. & Verhoeven, G. (2005). The role of androgens in sertoli cell proliferation and functional maturation: Studies in mice with total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology 146, 26742683.Google Scholar
Thysen, B., Morris, P.L., Gatz, M. & Bloch, E. (1990). The effect of mono(2-ethylhexyl) phthalate on Sertoli cell transferrin secretion in vitro. Toxicol Appl Pharmcol 106, 154157.Google Scholar
Treinen, K.A., Dodson, C. & Heindel, J.J. (1990). Inhibition of FSH-stimulated cAMP accumulation and progesterone production by mono(2-ethylhexyl) phthalate in rat granulosa cell cultures. Toxicol Appl Pharmacol 106, 334340.Google Scholar
Wang, R., Chang, J.S., Zhou, X.M. & Chen, D.Y. (1991). Varicocele in the rat: A new experimental model. Effect on histology, ultrastructure and temperature of the testis and the epididymis. Urol Res 19, 319322.CrossRefGoogle Scholar
Wang, Z.Q., Watananbe, Y., Toki, A. & Itano, T. (2002). Altered distribution of Sertoli cell vimentin and increased apoptosis in cryptorchid rats. J Pediatr Surg 37, 648652.Google Scholar
Zhu, O., Van Thiel, D.H. & Gavalier, J.S. (1997). Effects of ethanol on rat Sertoli cell function: Studies in vitro and in vivo. Alcohol Clin Exp Res 21, 14091417.Google Scholar