Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T10:05:59.545Z Has data issue: false hasContentIssue false

Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure

Published online by Cambridge University Press:  31 March 2014

Mark P. Oxley*
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Myron D. Kapetanakis
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
Micah P. Prange
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
Maria Varela
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Departamento de Física Aplicada III & Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain
Stephen J. Pennycook
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Sokrates T. Pantelides
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, USA
*
*Corresponding author. oxleymp@gmail.com
Get access

Abstract

We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.

Type
EDGE Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolph, B., Furthmüller, J. & Bechstedt, F. (2001). Optical properties of semiconductors using projector-augmented waves. Phys Rev B 63, 125108.Google Scholar
Allen, L.J., Findlay, S.D., Oxley, M.P. & Rossouw, C.J. (2003). Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 4764.Google Scholar
Allen, L.J. & Josefsson, T.W. (1995). Inelastic scattering of fast electrons by crystals. Phys Rev B 52, 31843198.Google Scholar
Ankudinov, A.L., Zabinsky, S.I. & Rehr, J.J. (1996). Single configuration Dirac-Fock atom code. Comp Phys Commun 98, 359364.Google Scholar
Blöchl, P.E. (1994). Projector augmented-wave method. Phys Rev B 50, 1795317979.Google Scholar
Bosman, M., Keast, V.J., García-Muñoz, J.L., D’Alfonso, A.J., Findlay, S.D. & Allen, L.J. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99, 086102.Google Scholar
Browning, N.D., Chisholm, M.F. & Pennycook, S.J. (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143146.Google Scholar
Buczko, R., Duscher, G., Pennycook, S.J. & Pantelides, S.T. (2000). Excitonic effects in core-excitation spectra of semiconductors. Phys Rev Lett 85, 21682171.Google Scholar
Dwyer, C. (2005). Multislice theory of fast electron scattering incorporating atomic inner-shell ionization. Ultramicroscopy 104, 141151.Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope . New York: Springer.Google Scholar
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 096101.Google Scholar
Forbes, B.D., Martin, A.V., Findlay, S.D., D’Alfonso, A.J. & Allen, L.J. (2010). Quantum mechanical model for phonon excitation in electron diffraction and imaging using a Born-Oppenheimer approximation. Phys Rev B 82, 104103.Google Scholar
Gazquez, J., Luo, W.D., Oxley, M.P., Prange, M., Torija, M.A., Sharma, M., Leighton, C., Pantelides, S.T., Pennycook, S.J. & Varela, M. (2011). Atomic-resolution imaging of spin-state superlattices in nanopockets within cobaltite thin films. Nano Lett 11, 973976.CrossRefGoogle ScholarPubMed
Hébert, C. (2007). Practical aspects of running the WIEN2k code for electron spectroscopy. Micron 38, 1228.Google Scholar
Jorissen, K., Rehr, J.J. & Verbeeck, J. (2010). Multiple scattering calculations of relativistic electron energy loss spectra. Phys Rev B 81, 155108.Google Scholar
Kohl, H. & Rose, H. (1985). Theory of image formation by inelastically scattered electrons in the electron microscope. In Advances in Electronics and Electron Physics, Hawkes, P. W. (Ed.), pp. 173227. London: Academic Press.Google Scholar
Kresse, G. & Furthmüller, J. (1996 a). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6, 1550.CrossRefGoogle Scholar
Kresse, G. & Furthmüller, J. (1996 b). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 1116911186.Google Scholar
Kresse, G. & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Phys Rev B 47, 558561.Google Scholar
Kresse, G. & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59, 17581775.Google Scholar
Lupini, A.R., Borisevich, A.Y., Idrobo, J.C., Christen, H.M., Biegalski, M. & Pennycook, S.J. (2009). Characterizing the two- and three-dimensional resolution of an improved aberration-corrected STEM. Microsc Microanal 15, 441453.Google Scholar
Maslen, V. (1983). Analytical angular integration of a product of hydrogenic bound-free first Born matrix elements. J Phys B 16, 20652069.Google Scholar
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.Google Scholar
Nelhiebel, M., Louf, P.H., Schattschneider, P., Blaha, P., Schwarz, K. & Jouffrey, B. (1999). Theory of orientation-sensitive near-edge fine-structure core-level spectroscopy. Phys Rev B 59, 1280712814.Google Scholar
Nelhiebel, M., Schattschneider, P. & Jouffrey, B. (2000). Observation of ionization in a crystal interferometer. Phys Rev Lett 85, 18471850.Google Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-Angstrom imaging of a crystal lattice. Science 305, 1741.CrossRefGoogle ScholarPubMed
Oxley, M.P. & Allen, L.J. (1998). Delocalization of the effective interaction for inner-shell ionization in crystals. Phys Rev B 57, 32733282.Google Scholar
Oxley, M.P., Cosgriff, E.C. & Allen, L.J. (2005). Nonlocality in imaging. Phys Rev Lett 94, 203906.Google Scholar
Oxley, M.P., Varela, M., Pennycook, T.J., van Benthem, K., Findlay, S.D., D’Alfonso, A.J., Allen, L.J. & Pennycook, S.J. (2007). Interpreting atomic-resolution spectroscopic images. Phys Rev B 76, 064303.Google Scholar
Prange, M.P., Oxley, M.P., Varela, M., Pennycook, S.J. & Pantelides, S.T. (2012). Simulation of spatially resolved electron energy loss near-edge structure for scanning transmission electron microscopy. Phys Rev Lett 109.Google Scholar
Rehr, J.J., Kas, J.J., Prange, M.P., Sorini, A.P., Takimoto, Y. & Vila, F. (2009). Ab initio theory and calculations of X-ray spectra. Comptes Rendus Physique 10, 548559.Google Scholar
Rusz, J., Rubino, S. & Schattschneider, P. (2007). First-principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets. Phys Rev B 75, 214425.Google Scholar
Sawada, H., Hosokawa, F., Kaneyama, T., Ishizawa, T., Terao, M., Kawazoe, M., Sannomiya, T., Tomita, T., Kondo, Y. & Tanaka, T. (2007). Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Japanese J Appl Phys 46, L568L570.Google Scholar
Sorini, A.P., Rehr, J.J. & Levine, Z.H. (2008). Magic angle in electron energy loss spectra: Relativistic and dielectric corrections. Phys Rev B 77, 115126.CrossRefGoogle Scholar
Van Benthem, K., Elsässer, C. & Rühle, M. (2003). Core-hole effects on the ELNES of absorption edges in SrTiO3 . Ultramicroscopy 96, 509522.Google Scholar
Varela, M., Oxley, M.P., Luo, W., Tao, J., Watanabe, M., Lupini, A.R., Pantelides, S.T. & Pennycook, S.J. (2009). Atomic-resolution imaging of oxidation states in manganites. Phys Rev B 79, 085117.CrossRefGoogle Scholar
Witte, C., Findlay, S.D., Oxley, M.P., Rehr, J.J. & Allen, L.J. (2009). Theory of dynamical scattering in near-edge electron energy loss spectroscopy. Phys Rev B 80.Google Scholar