Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T10:52:04.578Z Has data issue: false hasContentIssue false

The Solubility Limit of Carbon in Alumina at 1,600°C

Published online by Cambridge University Press:  08 September 2022

Li-or Cohen
Affiliation:
Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Priyadarshini Ghosh
Affiliation:
Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Alex Berner
Affiliation:
Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Rachel Marder
Affiliation:
Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Wayne D. Kaplan*
Affiliation:
Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
*
*Corresponding author: Wayne D. Kaplan, E-mail: kaplan@technion.ac.il
Get access

Abstract

The solubility limit of carbon in α-Al2O3 (alumina) equilibrated at 1,600°C under He in a graphite furnace was measured by wavelength-dispersive spectroscopy. Undoped alumina and alumina containing carbon at a concentration resulting in the precipitation of a second phase were prepared and equilibrated at 1,600°C. The undoped alumina was used to quantify the amount of carbon deposited on the surface of samples because of hydrocarbon contamination in the electron microscope, and this background level was removed from the signal measured from carbon-doped samples. The solubility limit of carbon in alumina was found to be 5,300 ± 390 at. ppm, and it is believed that carbon substitutes oxygen as an anion and is charge-compensated by oxygen vacancies. Doping alumina with carbon at concentrations below the solubility limit does not impede densification and reduces grain growth. Doping above the solubility limit hinders densification during sintering.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, I, Cao, HZ, Chen, HH, Zhao, H, Kennedy, A & Zhu, YQ (2010). Carbon nanotube toughened aluminium oxide nanocomposite. J Eur Ceram Soc 30(4), 865873. doi:10.1016/j.jeurceramsoc.2009.09.032CrossRefGoogle Scholar
Ahn, CC & Krivanek, OL (1983). EELS Atlas: A Reference Collection of Electron Energy Loss Spectra Covering All Stable Elements. Warrendale, PA: Gatan.Google Scholar
Akiva, R, Berner, A & Kaplan, WD (2013). The solubility limit of CaO in α-alumina at 1600°C. J Am Ceram Soc 96(10), 32583264. doi:10.1111/jace.12442CrossRefGoogle Scholar
Akselrod, MS, Kortov, VS, Kravetsky, DJ & Gotlib, VI (1990). Highly sensitive thermoluminescent anion-defective alpha-Al2O3:C single crystal detectors. Radiat Prot Dosim 32(1), 1520. doi:10.1093/oxfordjournals.rpd.a080715Google Scholar
Berner, AI, Gimelfarb, FA & Ukhorskaya, TA (1982). Metrological aspects of micro-probe analysis. J Anal Chem USSR 37(2), 268276.Google Scholar
Biesuz, M & Sglavo, VM (2016). Flash sintering of alumina: Effect of different operating conditions on densification. J Eur Ceram Soc 36(10), 25352542. doi:10.1016/j.jeurceramsoc.2016.03.021CrossRefGoogle Scholar
Clegg, WJ (2000). Role of carbon in the sintering of boron-doped silicon carbide. J Am Ceram Soc 83(5), 10391043. doi:10.1111/j.1151-2916.2000.tb01327.xCrossRefGoogle Scholar
Dillon, AC, Ott, AW, Way, JD & George, SM (1995). Surface chemistry of Al2O3 deposition using Al(CH3)3 and H2O in a binary reaction sequence. Surf Sci 322(1), 230242. doi:10.1016/0039-6028(95)90033-0CrossRefGoogle Scholar
Ewels, P, Sikora, T, Serin, V, Ewels, CP & Lajaunie, L (2016). A complete overhaul of the electron energy-loss spectroscopy and X-ray absorption spectroscopy database: eelsdb.eu. Microsc Microanal 22(3), 717724. doi:10.1017/S1431927616000179CrossRefGoogle ScholarPubMed
Ferrari, AC (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1), 4757. doi:10.1016/j.ssc.2007.03.052CrossRefGoogle Scholar
Ferrari, AC & Robertson, J (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20), 1409514107. doi:10.1103/PhysRevB.61.14095CrossRefGoogle Scholar
Futazuka, T, Ishikawa, R, Shibata, N & Ikuhara, Y (2020). First-principles calculations of group IIA and group IV impurities in α-Al2O3. Phys Rev Mater 4(7), 073602. doi:10.1103/PhysRevMaterials.4.073602CrossRefGoogle Scholar
Ghosh, P, Marder, R, Berner, A & Kaplan, WD (2020). The influence of temperature on the solubility limit of Ca in alumina. J Eur Ceram Soc 40(15), 57675772. doi:10.1016/j.jeurceramsoc.2020.07.057CrossRefGoogle Scholar
Gluzer, G & Kaplan, WD (2013). Particle occlusion and mechanical properties of Ni–Al2O3 nanocomposites. J Eur Ceram Soc 33(15–16), 31013113. doi:10.1016/j.jeurceramsoc.2013.05.019CrossRefGoogle Scholar
Gross, E, Dahan, DB & Kaplan, WD (2015). The role of carbon and SiO2 in solid-state sintering of SiC. J Eur Ceram Soc 35(7), 20012005. doi:10.1016/j.jeurceramsoc.2014.12.035CrossRefGoogle Scholar
Henke, BL, Lee, P, Tanaka, TJ, Shimabukuro, RL & Fujikawa, BK (1982). Low-energy X-ray interaction coefficients: Photoabsorption, scattering, and reflection: E=100–2000 eV Z=1–94. At Data Nucl Data Tables 27(1), 1144. doi:10.1016/0092-640X(82)90002-XCrossRefGoogle Scholar
Hovis, DB, Reddy, A & Heuer, AH (2006). X-ray elastic constants for α-Al2O3. Appl Phys Lett 88(13), 131910. doi:10.1063/1.2189071CrossRefGoogle Scholar
Khan, SUM, Al-Shahry, M & Ingler, WB (2002). Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 22432245. doi:10.1126/science.1075035CrossRefGoogle ScholarPubMed
Kortov, V & Milman, I (1996). Some new data on thermoluminescence properties of dosimetric alpha-Al2O3 crystals. Radiat Prot Dosim 65(1–4), 179184. doi:10.1093/oxfordjournals.rpd.a031616CrossRefGoogle Scholar
Krishnan, RS (1947). Raman spectrum of alumina and the luminescence and absorption spectra of ruby. Nature 160(4053), 2626. doi:10.1038/160026a0CrossRefGoogle Scholar
Lee, J & Lee, B (2017). A simple method to determine the surface energy of graphite. Carbon Lett 21(1), 107110. doi:10.5714/CL.2017.21.107CrossRefGoogle Scholar
Lee, KH & Crawford, JH (1978). Additive coloration of sapphire. Appl Phys Lett 33(4), 273275. doi:10.1063/1.90362CrossRefGoogle Scholar
Lieberthal, M & Kaplan, WD (2001). Processing and properties of Al2O3 nanocomposites reinforced with sub-micron Ni and NiAl2O4. Mater Sci Eng A 302(1), 8391. doi:10.1016/S0921-5093(00)01358-7CrossRefGoogle Scholar
Marder, R, Ghosh, P, Reimanis, I & Kaplan, WD (2021). The influence of carbon on the microstructure and wear resistance of alumina. J Am Ceram Soc 104(8), 42144225. doi:10.1111/jace.17832CrossRefGoogle Scholar
Marquis, EA, Yahya, NA, Larson, DJ, Miller, MK & Todd, RI (2010). Probing the improbable: Imaging C atoms in alumina. Mater Today 13(10), 3436. doi:10.1016/S1369-7021(10)70184-XCrossRefGoogle Scholar
Merlet, C (1994). An accurate computer correction program for quantitative electron probe microanalysis. Microchim Acta 114(1), 363376. doi:10.1007/BF01244563CrossRefGoogle Scholar
Michálek, M, Michálková, M, Blugan, G & Kuebler, J (2018). Effect of carbon contamination on the sintering of alumina ceramics. J Eur Ceram Soc 38(1), 193199. doi:10.1016/J.JEURCERAMSOC.2017.08.011CrossRefGoogle Scholar
Miller, L, Avishai, A & Kaplan, WD (2006). Solubility limit of MgO in Al2O3 at 1600°C. J Am Ceram Soc 89(1), 350353. doi:10.1111/j.1551-2916.2005.00674.xCrossRefGoogle Scholar
Miranzo, P, Tabernero, L, Moya, JS & Jurado, JR (1990). Effect of sintering atmosphere on the densification and electrical properties of alumina. J Am Ceram Soc 73(7), 21192121. doi:10.1111/j.1151-2916.1990.tb05282.xCrossRefGoogle Scholar
Morita, K, Kim, B-N, Yoshida, H, Hiraga, K & Sakka, Y (2018). Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering (SPS) processing: II - Effect of SPS and loading temperatures. J Eur Ceram Soc 38(6), 25962604. doi:10.1016/j.jeurceramsoc.2017.12.004CrossRefGoogle Scholar
Moshe, R, Berner, A & Kaplan, WD (2014). The solubility limit of SiO2 in α-alumina at 1600°C. Scr Mater 86, 4043. doi:10.1016/j.scriptamat.2014.05.005CrossRefGoogle Scholar
Moshe, R & Kaplan, WD (2019). The combined influence of Mg and Ca on microstructural evolution of alumina. J Am Ceram Soc 102(8), 48824887. doi:10.1111/jace.16321CrossRefGoogle Scholar
Popova, TB, Flegontova, EY, Bakaleinikov, LA & Zamoryanskaya, MV (2008). Monte Carlo calculations in X-ray microanalysis of epitaxial layers. Microchim Acta 161(3), 459463. doi:10.1007/s00604-008-0955-8CrossRefGoogle Scholar
Powers, JD & Glaeser, AM (1998). Grain boundary migration in ceramics. Interface Sci 6(1–2), 2339. doi:10.1023/A:1008656302007CrossRefGoogle Scholar
Scott, VD, Love, G & Reed, SJB (1995). Quantitative Electron-Probe Microanalysis. New York: Ellis Horwood, pp. 19–59, 93–107.Google Scholar
Seo, S, Nam, T, Lee, H-B-R, Kim, H & Shong, B (2018). Molecular oxidation of surface –CH3 during atomic layer deposition of Al2O3 with H2O, H2O2, and O3: A theoretical study. Appl Surf Sci 457, 376380. doi:10.1016/j.apsusc.2018.06.160CrossRefGoogle Scholar
Stobierski, L & Gubernat, A (2003). Sintering of silicon carbide I. Effect of carbon. Ceram Int 29(3), 287292. doi:10.1016/S0272-8842(02)00117-7CrossRefGoogle Scholar
Tuinstra, F & Koenig, JL (1970). Raman spectrum of graphite. J Chem Phys 53(3), 11261130. doi:10.1063/1.1674108CrossRefGoogle Scholar
Vladár, A, Purushotham, KP & Postek, M (2008). Contamination specification for dimensional metrology SEMs. In Proceedings of SPIE Metrology, Inspection, and Process Control for Microlithography XXII, vol. 6922, Allgair JA & Raymond CJ (Eds.), pp. 6922171–5. San Jose, CA: SPIE Advanced Lithography. doi:10.1117/12.774015CrossRefGoogle Scholar
Weast, RC (1979). Handbook of Chemistry and Physics, 60th ed. Boca Raton, FL: CRC Press Inc.Google Scholar
Wilhelm, H, Lelaurain, M, Mcrae, E & Humbert, B (1998). Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character. J Appl Phys 84(12), 65526558. doi:10.1063/1.369027CrossRefGoogle Scholar
Yahya, NA & Todd, RI (2012). Influence of C doping on the fracture mode and abrasive wear of Al2O3. J Eur Ceram Soc 32(16), 40034007. doi:10.1016/j.jeurceramsoc.2012.07.003CrossRefGoogle Scholar
Yang, X-B, Li, H-J, Bi, Q-Y, Cheng, Y, Tang, Q & Xu, J (2008). Influence of carbon on the thermoluminescence and optically stimulated luminescence of α-Al2O3: C crystals. J Appl Phys 104(12), 123112. doi:10.1063/1.3050344CrossRefGoogle Scholar
Yukihara, EG, Doull, BA, Ahmed, M, Brons, S, Tessonnier, T, Jäkel, O & Greilich, S (2015). Time-resolved optically stimulated luminescence of Al2O3: C for ion beam therapy dosimetry. Phys Med Biol 60(17), 66136638. doi:10.1088/0031-9155/60/17/6613CrossRefGoogle ScholarPubMed
Zener, C (1949). Relation between residual strain energy and elastic moduli. Acta Crystallogr 2(3), 163166. doi:10.1107/S0365110X49000448CrossRefGoogle Scholar
Zhu, J, Muthe, KP & Pandey, R (2014). Stability and electronic properties of carbon in α-Al2O3. J Phys Chem Solids 75(3), 379383. doi:10.1016/J.JPCS.2013.11.005CrossRefGoogle Scholar