Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T21:35:59.811Z Has data issue: false hasContentIssue false

Spatial Resolution Optimization of Backscattered Electron Images Using Monte Carlo Simulation

Published online by Cambridge University Press:  09 May 2012

Camille Probst
Affiliation:
McGill University, Mining and Materials Engineering, Montréal, Quebec H3A 2B2, Canada
Hendrix Demers
Affiliation:
McGill University, Mining and Materials Engineering, Montréal, Quebec H3A 2B2, Canada Universite de Sherbrooke, Electrical and Computer Engineering Department, Sherbrooke, Quebec J1K 2R1, Canada
Raynald Gauvin*
Affiliation:
McGill University, Mining and Materials Engineering, Montréal, Quebec H3A 2B2, Canada
*
Corresponding author. E-mail: raynald.gauvin@mcgill.ca
Get access

Abstract

The relation between probe size and spatial resolution of backscattered electron (BSE) images was studied. In addition, the effect of the accelerating voltage, the current intensity and the sample geometry and composition were analyzed. An image synthesis method was developed to generate the images from backscattered electron coefficients obtained from Monte Carlo simulations. Spatial resolutions of simulated images were determined with the SMART-J method, which is based on the Fourier transform of the image. The resolution can be improved by either increasing the signal or decreasing the noise of the backscattered electron image. The analyses demonstrate that using a probe size smaller than the size of the observed object (sample features) does not improve the spatial resolution. For a probe size larger than the feature size, the spatial resolution is proportional to the probe size.

Type
Techniques Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bogner, A., Jouneau, P.H., Thollet, G., Basset, D. & Gauthier, C. (2007). A history of scanning electron microscopy developments: Towards “wet-STEM” imaging. Micron 38(4), 390401.CrossRefGoogle ScholarPubMed
Cizmar, P., Vladár, A.E., Ming, B. & Postek, M.T. (2008a). Artificial SEM images for testing resolution-measurement methods. Microsc Microanal 14(Suppl 2), 910911.CrossRefGoogle Scholar
Cizmar, P., Vladár, A.E., Ming, B. & Postek, M.T. (2008b). Simulated SEM images for resolution measurement. Scanning 30, 111.CrossRefGoogle ScholarPubMed
Cizmar, P., Vladár, A.E. & Postek, M.T. (2007). Image simulation for testing of SEM resolution measurement methods. Scanning 29(2), 8182.Google Scholar
Czyzewski, Z., MacCallum, D.O.N., Romig, A. & Joy, D.C. (1990). Calculation of Mott scattering cross section. J Appl Phys 68(7), 30663072.CrossRefGoogle Scholar
Demers, H., Poirier-Demers, N., Couture, A.R., Joly, D., Guilmain, M., de Jonge, N. & Drouin, D. (2011). Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning 33(3), 135146.CrossRefGoogle ScholarPubMed
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92101.CrossRefGoogle ScholarPubMed
Drouin, D., Hovington, P. & Gauvin, R. (1997). CASINO: A new Monte Carlo Code in C language for electron beam interactions—part II: Tabulated values of the Mott cross section. Scanning 19(1), 2028.CrossRefGoogle Scholar
El Gomati, M.M. & Prutton, M. (1980). Calculations of the effects of backscattered electrons upon the spatial resolution of the scanning Auger electron microscope due to changes in the primary energy and the angle of incidence. In Electron Microscopy and Analysis, 1979, Murlvey, T. (Ed.), pp. 361364. London: The Institute of Physics.Google Scholar
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Romig, A.D. Jr., Lyman, C.E., Fiori, C. & Lifshin, E. (2003). Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Govoni, D., Merli, P.G., Migliori, A. & Nacucchi, M. (1995). Resolution of semiconductor multilayers using backscattered electrons in scanning electron microscopy. Microsc Microanal Microstruct 6(5-6), 499504.CrossRefGoogle Scholar
Hovington, P., Drouin, D. & Gauvin, R. (1997a). CASINO: A new Monte Carlo code in C language for electron beam interaction—part I: Description of the program. Scanning 19(1), 114.CrossRefGoogle Scholar
Hovington, P., Drouin, D., Gauvin, R., Joy, D.C. & Evans, N. (1997b). CASINO: A new Monte Carlo code in C language for electron beam interactions—part III: Stopping power at low energies. Scanning 19(1), 2935.CrossRefGoogle Scholar
Joy, D.C. (1974). Measurement of SEM parameters. In Proceedings of the 7th SEM Symposium, Johari, O. (Ed.), Illinois Institute of Technology Research Institute, Chicago, pp. 327334.Google Scholar
Joy, D.C. (1995). Monte Carlo Modeling for Electron Microscopy and Microanalysis. New York: Oxford University Press.CrossRefGoogle Scholar
Joy, D.C. (2002). SMART—A program to measure SEM resolution and imaging performance. J Microsc 208, 2434.CrossRefGoogle ScholarPubMed
Kim, J., Jalhadi, K., Lee, S.Y. & Joy, D.C. (2007). Fabrication of a Fresnel zone plate through electron beam lithographic process and its application to measuring of critical dimension scanning electron microscope performance. J Vac Sci Technol B 25(6), 17711775.CrossRefGoogle Scholar
Mao, S.F. & Ding, Z.J. (2010). A Monte Carlo simulation study on the image resolution in scanning electron microscopy. Surf Interf Anal 42(6-7), 10961099.CrossRefGoogle Scholar
Merli, P.G., Migliori, A., Nacucchi, M., Govoni, D. & Mattei, G. (1995). On the resolution of semiconductor multilayers with a scanning electron microscope. Ultramicroscopy 60(2), 229239.CrossRefGoogle Scholar
Postek, M.T. & Vladár, A.E. (1998). Image sharpness measurement in scanning electron microscopy—part I. Scanning 20(1), 19.CrossRefGoogle Scholar
Postek, M.T., Vladár, A.E., Lowney, J.R. & Keery, W.J. (2002). Two-dimensional simulation and modeling in scanning electron microscope imaging and metrology research. Scanning 24(4), 179185.CrossRefGoogle ScholarPubMed
Probst, C., Gauvin, R. & Drew, R.A.L. (2007). Imaging of carbon nanotubes with tin-palladium particles using STEM detector in a FE-SEM. Micron 38(4), 402408.CrossRefGoogle Scholar
Radzimski, Z.J. & Russ, J.C. (1995). Image simulation using Monte Carlo methods: Electron beam and detector characteristics. Scanning 17(5), 276280.CrossRefGoogle Scholar
Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. London, New York, Berlin: Springer.CrossRefGoogle Scholar
Vladár, A.E., Postek, M.T. & Davidson, M.P. (1998). Image sharpness measurement in scanning electron microscopy—part II. Scanning 20(1), 2434.CrossRefGoogle Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy: A Textbook for Materials Science. New York: Plenum Press.CrossRefGoogle Scholar
Yue, Y.T., Li, H.M. & Ding, Z.J. (2005). Monte Carlo simulation of secondary electron and backscattered electron images for a nanoparticle-matrix system. J Phys D 38, 19661977.CrossRefGoogle Scholar
Zhang, N.F., Postek, M.T., Larrabee, R.D., Vladár, A.E., Keery, W.J. & Jones, S.N. (1999). Image sharpness measurement in the scanning electron microscopy—part III. Scanning 21(4), 246252.CrossRefGoogle Scholar