No CrossRef data available.
Article contents
Spectral Imaging of Chromogenic Dyes in Cytological Specimens
Published online by Cambridge University Press: 02 July 2020
Extract
Recently, spectral imaging has been successfully applied to 24-color fluorescence in situ hybridization (FISH), and it has evolved into a new powerful method for the analysis of structural and numerical chromosomal aberrations on metaphase spreads (spectral karyotyping) For cytological specimens it is often impossible to use fluorescence microscopy because of (fixation-induced) auto-fluorescence or prior cytological staining. Also, re-examination of archived fluorescent specimens is hampered by fading. However, the need for multi-parameter cytochemical analysis remains when rare or unique material is to be studied in research or clinical diagnosis. Multi-color bright-field microscopy using enzyme precipitates has become feasible for in situ hybridization as well as immunohistochemical detection. Conventional transmission microscopy optics have allowed up to three targets to be detected simultaneously. In parallel to 24-color FISH, we explored the potential of spectral imaging to increase the number of parameters to be analyzed in bright-field microscopy.
- Type
- Cytochemistry, Histochemistry, Immunocytochemistry, and in Situ Hybridization
- Information
- Microscopy and Microanalysis , Volume 3 , Issue S2: Proceedings: Microscopy & Microanalysis '97, Microscopy Society of America 55th Annual Meeting, Microbeam Analysis Society 31st Annual Meeting, Histochemical Society 48th Annual Meeting, Cleveland, Ohio, August 10-14, 1997 , August 1997 , pp. 143 - 144
- Copyright
- Copyright © Microscopy Society of America 1997