Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T22:54:17.813Z Has data issue: false hasContentIssue false

Standardizing Spatial Reconstruction Parameters for the Atom Probe Analysis of Common Minerals

Published online by Cambridge University Press:  01 December 2021

Denis Fougerouse*
Affiliation:
School of Earth and Planetary Sciences, Curtin University, Perth, 6102, Australia Geoscience Atom Probe Facility, John de Laeter Centre, Curtin University, Perth, 6102, Australia
David W. Saxey
Affiliation:
Geoscience Atom Probe Facility, John de Laeter Centre, Curtin University, Perth, 6102, Australia
William D. A. Rickard
Affiliation:
Geoscience Atom Probe Facility, John de Laeter Centre, Curtin University, Perth, 6102, Australia
Steven M. Reddy
Affiliation:
School of Earth and Planetary Sciences, Curtin University, Perth, 6102, Australia Geoscience Atom Probe Facility, John de Laeter Centre, Curtin University, Perth, 6102, Australia
Rick Verberne
Affiliation:
Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, 1350, Denmark
*
*Corresponding author: Denis Fougerouse, E-mail: denis.fougerouse@curtin.edu.au
Get access

Abstract

Well-defined reconstruction parameters are essential to quantify the size, shape, and distribution of nanoscale features in atom probe tomography (APT) datasets. However, the reconstruction parameters of many minerals are difficult to estimate because intrinsic spatial markers, such as crystallographic planes, are not usually present within the datasets themselves. Using transmission and/or scanning electron microscopy imaging of needle-shaped specimens before and after atom probe analysis, we test various approaches to provide best-fit reconstruction parameters for voltage-based APT reconstructions. The results demonstrate that the length measurement of evaporated material, constrained by overlaying pre- and post-analysis images, yields more consistent reconstruction parameters than the measurement of final tip radius. Using this approach, we provide standardized parameters that may be used in APT reconstructions of 11 minerals. The adoption of standardized reconstruction parameters by the geoscience APT community will alleviate potential problems in the measurement of nanoscale features (e.g., clusters and interfaces) caused by the use of inappropriate parameters.

Type
Application to Minerals
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agangi, A, Reddy, SM, Plavsa, D, Fougerouse, D, Clark, C, Roberts, M & Johnson, TE (2019). Antimony in rutile as a pathfinder for orogenic gold deposits. Ore Geol Rev 106, 111.CrossRefGoogle Scholar
Arcuri, G, Moser, D, Reinhard, D, Langelier, B & Larson, D (2020). Impact-triggered nanoscale Pb clustering and Pb loss domains in Archean zircon. Contrib Mineral Petrol 175(59), 59.CrossRefGoogle Scholar
Bachhav, M, Dong, Y, Skemer, P & Marquis, EA (2015). Atomic scale investigation of orthopyroxene and olivine grain boundaries by atom probe tomography. Microsc Microanal 21(S3), 13151316.CrossRefGoogle Scholar
Bloch, EM, Jollands, MC, Gerstl, SSA, Bouvier, AS, Plane, F & Baumgartner, LP (2019). Diffusion of calcium in forsterite and ultra-high resolution of experimental diffusion profiles in minerals using local electrode atom probe tomography. Geochim Cosmochim Acta 265, 8595.CrossRefGoogle Scholar
Blum, TB, Darling, JR, Kelly, TF, Larson, DJ, Moser, DE, Perez-Huerta, A, Prosa, TJ, Reddy, SM, Reinhard, DA & Saxey, DW (2018). Best practices for reporting atom probe analysis of geological materials. In Microstructural Geochronology: Planetary Records Down to Atom Scale, Moser, DE, Corfu, F, Darling, JR, Reddy, SM & Tait, K (Eds.), pp. 369373. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Blum, TB, Reinhard, DA, Chen, Y, Prosa, TJ, Larson, DJ & Valley, JW (2018). Uncertainty and sensitivity analysis for spatial and spectral processing of Pb isotopes in zircon by atom probe tomography. In Microstructural Geochronology: Planetary Records Down to Atom Scale, Moser, DE, Corfu, F, Darling, JR, Reddy, SM & Tait, K (Eds.), vol. 232. pp. 327. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Brandt, S, Fassbender, M, Klemd, R, Macauley, C, Felfer, P & Haase, K (2021). Cumulate olivine: A novel host for heavy rare earth element mineralization. Geology 49(4), 457462.CrossRefGoogle Scholar
Cao, M, Evans, NJ, Reddy, SM, Fougerouse, D, Hollings, P, Saxey, DW, McInnes, BI, Cooke, DR, McDonald, BJ & Qin, K (2019). Micro- and nano-scale textural and compositional zonation in plagioclase at the Black Mountain porphyry Cu deposit: Implications for magmatic processes. Am Mineral 104, 391402.CrossRefGoogle Scholar
Cappelli, C & Pérez-Huerta, A (2020). Effect of crystallographic orientation on atom probe tomography geochemical data? Micron 137, 102910.CrossRefGoogle ScholarPubMed
Cappelli, C, Smart, S, Stowell, H & Pérez-Huerta, A (2021). Exploring biases in atom probe tomography compositional analysis of minerals. Geostand Geoanal Res 45(3), 457476.CrossRefGoogle Scholar
Ceguerra, AV, Day, AC & Ringer, SP (2019). Assessing the spatial accuracy of the reconstruction in atom probe tomography and a new calibratable adaptive reconstruction. Microsc Microanal 25(2), 309319.CrossRefGoogle Scholar
Černok, A, White, LF, Anand, M, Tait, KT, Darling, JR, Whitehouse, M, Miljković, K, Lemelin, M, Reddy, SM & Fougerouse, D (2021). Lunar samples record an impact 4.2 billion years ago that may have formed the Serenitatis Basin. Commun Earth Environ 2(1), 19.CrossRefGoogle Scholar
Clark, D, Hensen, B & Kinny, P (2000). Geochronological constraints for a two-stage history of the Albany–Fraser Orogen, Western Australia. Precambrian Res 102(3–4), 155183.CrossRefGoogle Scholar
Cukjati, JT, Cooper, RF, Parman, SW, Zhao, N, Akey, AJ & Laiginhas, FA (2019). Differences in chemical thickness of grain and phase boundaries: An atom probe tomography study of experimentally deformed wehrlite. Phys Chem Miner 46(9), 845859.CrossRefGoogle Scholar
Darling, J, White, L, Kizovski, T, Černok, A, Moser, DE, Tait, K, Dunlop, J, Langelier, B, Douglas, J & Zhao, X (2021). The shocking state of apatite and merrillite in shergottite Northwest Africa 5298 and extreme nanoscale chlorine isotope variability revealed by atom probe tomography. Geochim Cosmochim Acta 293, 422437.CrossRefGoogle Scholar
Devaraj, A, Colby, R, Hess, WP, Perea, DE & Thevuthasan, S (2013). Role of photoexcitation and field ionization in the measurement of accurate oxide stoichiometry by laser-assisted atom probe tomography. J Phys Chem Lett 4(6), 993998.CrossRefGoogle ScholarPubMed
Diercks, DR & Gorman, BP (2018). Self-consistent atom probe tomography reconstructions utilizing electron microscopy. Ultramicroscopy 195, 3246.CrossRefGoogle ScholarPubMed
Dubosq, R, Rogowitz, A, Schneider, D, Schweinar, K & Gault, B (2021). Fluid inclusion induced hardening: Nanoscale evidence from naturally deformed pyrite. Contributions to Mineralogy and Petrology 176(2), 114.CrossRefGoogle Scholar
Dubosq, R, Rogowitz, A, Schweinar, K, Gault, B & Schneider, DA (2019). A 2D and 3D nanostructural study of naturally deformed pyrite: Assessing the links between trace element mobility and defect structures. Contrib Mineral Petrol 174(9), 72.CrossRefGoogle Scholar
Elliott, JC (2002). Calcium phosphate biominerals. Rev Mineral Geochem 48(1), 427453.CrossRefGoogle Scholar
Exertier, F, La Fontaine, A, Corcoran, C, Piazolo, S, Belousova, E, Peng, Z, Gault, B, Saxey, DW, Fougerouse, D & Reddy, SM (2018). Atom probe tomography analysis of the reference zircon gj-1: An interlaboratory study. Chem Geol 495, 2735.CrossRefGoogle Scholar
Fletcher, C, Moody, MP & Haley, D (2020). Towards model-driven reconstruction in atom probe tomography. J Phys D Appl Phys 53(47), 475303.CrossRefGoogle Scholar
Fletcher, IR, McNaughton, NJ, Aleinikoff, JA, Rasmussen, B & Kamo, SL (2004). Improved calibration procedures and new standards for U–Pb and Th–Pb dating of Phanerozoic xenotime by ion microprobe. Chem Geol 209(3), 295314.CrossRefGoogle Scholar
Fougerouse, D, Cavosie, AJ, Erickson, T, Reddy, SM, Cox, MA, Saxey, D, Rickard, W & Wingate, MT (2021 a). A new method for dating impact events-thermal dependency on nanoscale Pb mobility in monazite shock twins. Geochim Cosmochim Acta 314, 381396.CrossRefGoogle Scholar
Fougerouse, D, Kirkland, CL, Saxey, DW, Seydoux-Guillaume, AM, Rowles, MR, Rickard, WDA & Reddy, SM (2020). Nanoscale isotopic dating of monazite. Geostand Geoanal Res 44(4), 637652.CrossRefGoogle Scholar
Fougerouse, D, Reddy, S, Seydoux-Guillaume, A-M, Kirkland, C, Erickson, T, Saxey, D, Rickard, W, Jacob, D, Leroux, H & Clark, C (2021 c). Mechanical twinning of monazite expels radiogenic lead. Geology 49(4), 417421.CrossRefGoogle Scholar
Fougerouse, D, Reddy, SM, Aylmore, M, Yang, L, Guagliardo, P, Saxey, DW, Rickard, WD & Timms, N (2021 b). A new kind of invisible gold in pyrite hosted in deformation-related dislocations. Geology 49(10), 12251229.CrossRefGoogle Scholar
Fougerouse, D, Reddy, SM, Kirkland, CL, Saxey, DW, Rickard, WD & Hough, RM (2019). Time-resolved, defect-hosted, trace element mobility in deformed Witwatersrand pyrite. Geosci Front 10(1), 5563.CrossRefGoogle Scholar
Fougerouse, D, Reddy, SM, Saxey, DW, Erickson, TM, Kirkland, CL, Rickard, WDA, Seydoux-Guillaume, AM, Clark, C & Buick, IS (2018). Nanoscale distribution of Pb in monazite revealed by atom probe microscopy. Chem Geol 479, 251258.CrossRefGoogle Scholar
Fougerouse, D, Reddy, SM, Saxey, DW, Rickard, WD, Van Riessen, A & Micklethwaite, S (2016). Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy. Am Mineral 101(8), 19161919.CrossRefGoogle Scholar
Frierdich, AJ, Saxey, DW, Adineh, VR, Fougerouse, D, Reddy, SM, Rickard, WD, Sadek, AZ & Southall, SC (2019). Direct observation of nanoparticulate goethite recrystallization by atom probe analysis of isotopic tracers. Environ Sci Technol 53(22), 1312613135.CrossRefGoogle ScholarPubMed
Frost, BR, Chamberlain, KR & Schumacher, JC (2001). Sphene (titanite): Phase relations and role as a geochronometer. Chem Geol 172(1–2), 131148.CrossRefGoogle Scholar
Gault, B, Haley, D, De Geuser, F, Moody, MP, Marquis, EA, Larson, DJ & Geiser, BP (2011). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111(6), 448457.CrossRefGoogle ScholarPubMed
Gault, B, La Fontaine, A, Moody, MP, Ringer, SP & Marquis, EA (2010). Impact of laser pulsing on the reconstruction in an atom probe tomography. Ultramicroscopy 110(9), 12151222.CrossRefGoogle Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. Springer Science & Business Media.CrossRefGoogle Scholar
Gault, B, Moody, MP, De Geuser, F, Tsafnat, G, La Fontaine, A, Stephenson, LT, Haley, D & Ringer, SP (2009). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105(3), 034913.CrossRefGoogle Scholar
Gopon, P, Douglas, JO, Auger, MA, Hansen, L, Wade, J, Cline, JS, Robb, LJ & Moody, MP (2019). A nanoscale investigation of carlin-type gold deposits: An atom-scale elemental and isotopic perspective. Econ Geol 114(6), 11231133.CrossRefGoogle Scholar
Gordon, LM, Cohen, MJ, MacRenaris, KW, Pasteris, JD, Seda, T & Joester, D (2015). Amorphous intergranular phases control the properties of rodent tooth enamel. Science 347(6223), 746750.CrossRefGoogle ScholarPubMed
Gordon, LM, Tran, L & Joester, D (2012). Atom probe tomography of apatites and bone-type mineralized tissues. ACS Nano 6(12), 1066710675.CrossRefGoogle ScholarPubMed
Hatzoglou, C, Da Costa, G & Vurpillot, F (2019). Enhanced dynamic reconstruction for atom probe tomography. Ultramicroscopy 197, 7282.CrossRefGoogle ScholarPubMed
Heaman, L & LeCheminant, A (1993). Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chem Geol 110(1–3), 95126.CrossRefGoogle Scholar
Heaman, LM (2009). The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: An evaluation of three mineral standards. Chem Geol 261(1–2), 4352.CrossRefGoogle Scholar
Herbig, M & Kumar, A (2021). Removal of hydrocarbon contamination and oxide films from atom probe specimens. Microsc Res Tech 84(2), 291297.CrossRefGoogle ScholarPubMed
Joseph, C, Fougerouse, D, Saxey, DW, Verberne, R, Reddy, SM & Rickard, WDA (2021). Xenotime at the nanoscale: U-Pb geochronology and optimisation of analyses by atom probe tomography. Geostand Geoanal Res 45(3), 443456.CrossRefGoogle Scholar
Kirkland, CL, Fougerouse, D, Reddy, SM, Hollis, J & Saxey, DW (2018). Assessing the mechanisms of common Pb incorporation into titanite. Chem Geol 483, 558566.CrossRefGoogle Scholar
Koelling, S, Innocenti, N, Schulze, A, Gilbert, M, Kambham, A & Vandervorst, W (2011). In-situ observation of non-hemispherical tip shape formation during laser-assisted atom probe tomography. J Appl Phys 109(10), 104909.CrossRefGoogle Scholar
LaFlamme, C, Martin, L, Jeon, H, Reddy, SM, Selvaraja, V, Caruso, S, Bui, TH, Roberts, MP, Voute, F & Hagemann, S (2016). In situ multiple sulfur isotope analysis by SIMS of pyrite, chalcopyrite, pyrrhotite, and pentlandite to refine magmatic ore genetic models. Chem Geol 444, 115.CrossRefGoogle Scholar
La Fontaine, A, Piazolo, S, Trimby, P, Yang, L & Cairney, JM (2017). Laser-Assisted atom probe tomography of deformed minerals: A zircon case study. Microsc Microanal 23(2), 404413.CrossRefGoogle ScholarPubMed
La Fontaine, A, Zavgorodniy, A, Liu, H, Zheng, R, Swain, M & Cairney, J (2016). Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci Adv 2(9), e1601145.CrossRefGoogle ScholarPubMed
Langelier, B, Wang, X & Grandfield, K (2017). Atomic scale chemical tomography of human bone. Sci Rep 7(1), 19.CrossRefGoogle ScholarPubMed
Larson, DJ, Prosa, T, Ulfig, RM, Geiser, BP & Kelly, TF (2013). Local Electrode Atom Probe Tomography. New York, USA: Springer Science.CrossRefGoogle Scholar
Loi, ST, Gault, B, Ringer, SP, Larson, DJ & Geiser, BP (2013). Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy 132, 107113.CrossRefGoogle ScholarPubMed
Mancini, L, Amirifar, N, Shinde, D, Blum, I, Gilbert, M, Vella, A, Vurpillot, FO, Lefebvre, W, Lardé, R & Talbot, E (2014). Composition of wide bandgap semiconductor materials and nanostructures measured by atom probe tomography and its dependence on the surface electric field. J Phys Chem C 118(41), 2413624151.CrossRefGoogle Scholar
Marks, MA, Wenzel, T, Whitehouse, MJ, Loose, M, Zack, T, Barth, M, Worgard, L, Krasz, V, Eby, GN & Stosnach, H (2012). The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach. Chem Geol 291, 241255.CrossRefGoogle Scholar
Miller, MK, Cerezo, A, Hetherington, M & Smith, GD (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford Science Publications.Google Scholar
Montalvo, SD, Reddy, SM, Saxey, DW, Rickard, WD, Fougerouse, D, Quadir, Z & Johnson, TE (2019). Nanoscale constraints on the shock-induced transformation of zircon to reidite. Chem Geol 507, 8595.CrossRefGoogle Scholar
Müller, EW (1956). Field desorption. Phys Rev 102(3), 618.CrossRefGoogle Scholar
Parrish, RR (1990). U-Pb dating of monazite and its application to geological problems. Can J Earth Sci 27(11), 14311450.CrossRefGoogle Scholar
Peterman, E, Reddy, SM, Saxey, D, Fougerouse, D, Snoeyenbos, D & Rickard, W (2019). Nanoscale processes of trace element mobility in metamorphosed zircon. Contrib Mineral Petrol 174(11), 92.CrossRefGoogle Scholar
Peterman, EM, Reddy, SM, Saxey, DW, Snoeyenbos, DR, Rickard, WD, Fougerouse, D & Kylander-Clark, AR (2016). Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops. Science Advances 2(9), e1601318.CrossRefGoogle ScholarPubMed
Reddy, SM, Saxey, DW, Rickard, WDA, Fougerouse, D, Montalvo, SD, Verberne, R & van Riessen, A (2020). Atom probe tomography: Development and application to the geosciences. Geostand Geoanal Res 44(1), 550.CrossRefGoogle Scholar
Rickard, WD, Reddy, SM, Saxey, DW, Fougerouse, D, Timms, NE, Daly, L, Peterman, E, Cavosie, AJ & Jourdan, F (2020). Novel applications of FIB-SEM-based ToF-SIMS in atom probe tomography workflows. Microsc Microanal 26(4), 750757.CrossRefGoogle ScholarPubMed
Saxey, D, Fougerouse, D, Rickard, W & Reddy, S (2019). Spatial reconstruction of atom probe data from zircon. Microsc Microanal 25(S2), 25362537.CrossRefGoogle Scholar
Saxey, D, Reddy, SM, Fougerouse, D & Rickard, WD (2018). The optimization of zircon analyses by Laser-assisted atom probe microscopy: Insights from the 91500 zircon standard. In Microstructural Geochronology: Planetary Records Down to Atom Scale, Moser, DE, Corfu, F, Darling, JR, Reddy, SM & Tait, K (Eds.), pp. 293313. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Schirmer, T, Ließmann, W, Macauley, C & Felfer, P (2020). Indium and antimony distribution in a sphalerite from the “burgstaetter gangzug” of the upper harz mountains Pb-Zn mineralization. Minerals 10(9), 791.CrossRefGoogle Scholar
Seydoux-Guillaume, A-M, Fougerouse, D, Laurent, A, Gardés, E, Reddy, S & Saxey, D (2019). Nanoscale resetting of the Th/Pb system in an isotopically-closed monazite grain: A combined atom probe and transmission electron microscopy study. Geosci Front 10(1), 6576.CrossRefGoogle Scholar
Sha, G, Cerezo, A & Smith, G (2008). Field evaporation behavior during irradiation with picosecond laser pulses. Appl Phys Lett 92(4), 043503.CrossRefGoogle Scholar
Shariq, A, Mutas, S, Wedderhoff, K, Klein, C, Hortenbach, H, Teichert, S, Kücher, P & Gerstl, S (2009). Investigations of field-evaporated end forms in voltage-and laser-pulsed atom probe tomography. Ultramicroscopy 109(5), 472479.CrossRefGoogle ScholarPubMed
Spear, FS & Pyle, JM (2002). Apatite, monazite, and xenotime in metamorphic rocks. Rev Mineral Geochem 48(1), 293335.CrossRefGoogle Scholar
Spencer, K, Hacker, B, Kylander-Clark, A, Andersen, T, Cottle, J, Stearns, M, Poletti, J & Seward, G (2013). Campaign-style titanite U–Pb dating by laser-ablation ICP: Implications for crustal flow, phase transformations and titanite closure. Chem Geol 341, 84101.CrossRefGoogle Scholar
Tacchetto, T, Reddy, SM, Bartoli, O, Rickard, WD, Fougerouse, D, Saxey, DW, Quadir, Z & Clark, C (2021 a). Pre-nucleation geochemical heterogeneity within glassy anatectic inclusions and the role of water in glass preservation. Contrib Mineral Petrol 176(9), 119.CrossRefGoogle Scholar
Tacchetto, T, Reddy, SM, Saxey, DW, Fougerouse, D, Rickard, WD & Clark, C (2021 b). Disorientation control on trace element segregation in fluid-affected low-angle boundaries in olivine. Contrib Mineral Petrol 176(7), 116.CrossRefGoogle Scholar
Taylor, SD, Liu, J, Zhang, X, Arey, BW, Kovarik, L, Schreiber, DK, Perea, DE & Rosso, KM (2019). Visualizing the iron atom exchange front in the Fe (II)-catalyzed recrystallization of goethite by atom probe tomography. Proc Natl Acad Sci U S A 116(8), 28662874.CrossRefGoogle ScholarPubMed
Thomson, SN, Gehrels, GE, Ruiz, J & Buchwaldt, R (2012). Routine low-damage apatite U-Pb dating using laser ablation–multicollector–ICPMS. Geochem Geophys Geosyst 13, 2.CrossRefGoogle Scholar
Verberne, R, Reddy, S, Saxey, D, Fougerouse, D, Rickard, W, Plavsa, D, Agangi, A & Kylander-Clark, A (2020). The geochemical and geochronological implications of nanoscale trace-element clusters in rutile. Geology 48(11), 11261130.CrossRefGoogle Scholar
Verberne, R, Saxey, DW, Reddy, SM, Rickard, WD, Fougerouse, D & Clark, C (2019). Analysis of natural rutile (TiO2) by laser-assisted atom probe tomography. Microsc Microanal 25(2), 539546.CrossRefGoogle ScholarPubMed
Vurpillot, F, Gault, B, Geiser, BP & Larson, D (2013). Reconstructing atom probe data: A review. Ultramicroscopy 132, 1930.CrossRefGoogle ScholarPubMed
White, L, Kizovski, T, Tait, K, Langelier, B, Gordon, L, Harlov, D & Norberg, N (2018). Nanoscale chemical characterisation of phase separation, solid state transformation, and recrystallization in feldspar and maskelynite using atom probe tomography. Contrib Mineral Petrol 173(10), 87.CrossRefGoogle Scholar
White, LF, Darling, J, Moser, D, Reinhard, D, Prosa, T, Bullen, D, Olsen, D, Larson, D, Lawrence, D & Martin, I (2017). Atomic-scale age resolution of planetary events. Nat Commun 8, 16.CrossRefGoogle ScholarPubMed
White, LF, Moser, DE, Tait, K, Langelier, B, Barker, I & Darling, J (2019). Crystallization and impact history of a meteoritic sample of early lunar crust (NWA 3163) refined by atom probe geochronology. Geosci Front 10.5), 18411848.CrossRefGoogle Scholar
Wu, Y-F, Fougerouse, D, Evans, K, Reddy, SM, Saxey, DW, Guagliardo, P & Li, J-W (2019). Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics. Geology 47(7), 641644.CrossRefGoogle Scholar
Zack, T & Kooijman, E (2017). Petrology and geochronology of rutile. Rev Mineral Geochemi 83(1), 443467.CrossRefGoogle Scholar
Supplementary material: File

Fougerouse et al. supplementary material

Fougerouse et al. supplementary material

Download Fougerouse et al. supplementary material(File)
File 44 MB