Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T05:51:24.050Z Has data issue: false hasContentIssue false

Statistical Machine Learning and Compressed Sensing Approaches for Analytical Electron Tomography - Application to Phase Change Materials

Published online by Cambridge University Press:  05 August 2019

Martin Jacob*
Affiliation:
Univ. Grenoble Alpes, CEA-LETI, Grenoble, France.
Loubna El Gueddari
Affiliation:
CEA-NeuroSpin, Bât 145 Gif-sur Yvette, France.
Gabriele Navarro
Affiliation:
Univ. Grenoble Alpes, CEA-LETI, Grenoble, France.
Marie-Claire Cyrille
Affiliation:
Univ. Grenoble Alpes, CEA-LETI, Grenoble, France.
Pascale Bayle-Guillemaud
Affiliation:
Univ. Grenoble Alpes, CEA-INAC, MEM, Grenoble, France.
Philippe Ciuciu
Affiliation:
CEA-NeuroSpin, Bât 145 Gif-sur Yvette, France.
Zineb Saghi
Affiliation:
Univ. Grenoble Alpes, CEA-LETI, Grenoble, France.
*
*Corresponding author: martin.jacob@cea.fr

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Data Acquisition Schemes, Machine Learning Algorithms, and Open Source Software Development for Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2019 

References

[1]Collins, SM and Midgley, PA, Ultramicroscopy 180 (2017), p. 133.Google Scholar
[2]Dobigeon, N and Brun, N, Ultramicroscopy 120 (2012), p. 25.Google Scholar
[3]Leary, R, et al. , Ultramicroscopy 131 (2013), p. 70.Google Scholar
[5]Gürsoy, D, et al. , J. Synchrotron Radiat. 21 (2014), p 1188.Google Scholar