Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T09:43:56.105Z Has data issue: false hasContentIssue false

Statistical Study of Beam-Induced Motion of Gold Adatoms by a Scanning TEM

Published online by Cambridge University Press:  08 May 2015

Wei Zhou
Affiliation:
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
Xin Li
Affiliation:
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
Guo-zhen Zhu*
Affiliation:
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
*
*Corresponding author. zhugz@sjtu.edu.cn
Get access

Abstract

In order to achieve reliable structural characterization by transmission electron microscopy, beam-induced structural changes should be clarified for any target material system. As an example, the movement of heavy adatoms on a thin carbon support has been repeatedly reported under the electron beam while the underlying reason for such motion is still in debate. By applying statistical analysis to the group behavior of gold adatoms, we investigated their motion under different beam conditions and detected features corresponding to beam-induced motion, under typical scanning transmission electron microscopy observation conditions. Our results are consistent with the theoretical prediction proposed by Egerton (2013).

Type
Materials Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batson, P.E. (2008). Motion of gold atoms on carbon in the aberration-corrected STEM. Microsc Microanal 14(01), 8997.Google Scholar
Crewe, A.V., Wall, J. & Langmore, J. (1970). Visibility of single atoms. Science 168(3937), 13381340.Google Scholar
Egerton, R.F. (2013). Beam-induced motion of adatoms in the transmission electron microscope. Microsc Microanal 19(2), 479486.Google Scholar
Gan, Y., Sun, L. & Banhart, F. (2008). One-and two-dimensional diffusion of metal atoms in graphene. Small 4(5), 587591.Google Scholar
Haider, M., Rose, H., Uhlemann, S., Kabius, B. & Urban, K. (1998). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47(5), 395405.CrossRefGoogle Scholar
Hansen, L.P., Ramasse, Q.M., Kisielowski, C., Brorson, M., Johnson, E., Topsoe, H. & Helveg, S. (2011). Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. Angew Chem Int Ed Engl 50(43), 1015310156.Google Scholar
Isaacson, M., Kopf, D., Utlaut, M., Parker, N.M. & Crewe, A.V. (1977). Direct observations of atomic diffusion by scanning transmission electron microscopy. Proc Natl Acad Sci 74(5), 18021806.Google Scholar
Jeon, I., Yang, H., Lee, S.H., Heo, J., Seo, D.H., Shin, J. & Seo, S. (2011). Passivation of metal surface states: Microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition. ACS Nano 5(3), 19151920.Google Scholar
Khanal, S., Casillas, G., Velazquez-Salazar, J.J., Ponce, A. & Jose-Yacaman, M. (2012). Atomic resolution imaging of polyhedral Pt Pd core–shell nanoparticles by Cs-corrected STEM. J Phys Chem C 116(44), 2359623602.Google Scholar
Krivanek, O., Dellby, N. & Lupini, A. (1999). Towards sub-Å electron beams. Ultramicroscopy 78(1), 111.Google Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288), 571574.Google Scholar
Liu, J. (2005). Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems. J Electron Microsc 54(3), 251278.Google Scholar
Pennycook, S.J. & Nellist, P.D., eds. (2011). Scanning Transmission Electron Microscopy: Imaging and Analysis. Springer-Verlag New York: Springer.CrossRefGoogle Scholar
Shibata, N., Goto, A., Choi, S.Y., Mizoguchi, T., Findlay, S.D., Yamamoto, T. & Ikuhara., Y. (2008). Direct imaging of reconstructed atoms on TiO2 (110) surfaces. Science 322(5901), 570573.Google Scholar
van der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y., Lee, G.H., Heinz, T.F., Reichman, D.R., Muller, D.A. & Hone, J.C. (2013). Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 12(6), 554561.Google Scholar
Voyles, P.M., Muller, D.A., Grazul, J.L., Citrin, P.H. & Gossmann, H.J.L. (2002). Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416(6883), 826829.Google Scholar
Wall, J. (1979). Biological Scanning Transmission Electron Microscopy in Introduction to Analytical Electron Microscopy. New York: Plenum.Google Scholar
Warner, J.H., Liu, Z., He, K., Robertson, A.W. & Suenaga, K. (2013). Sensitivity of graphene edge states to surface adatom interactions. Nano Lett 13(10), 48204826.Google Scholar
Yan, W., Brown, S., Pan, Z., Mahurin, S.M., Overbury, S.H. & Dai, S. (2006). Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate. Angew Chem Int Ed Engl 118(22), 36963700.Google Scholar
Zan, R., Bangert, U., Ramasse, Q. & Novoselov, K.S. (2011). Metal-graphene interaction studied via atomic resolution scanning transmission electron microscopy. Nano Lett 11(3), 10871092.Google Scholar
Zhu, G.Z., Radtke, G. & Botton, G.A. (2012). Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM. Nature 490(7420), 384387.Google Scholar
Supplementary material: File

Zhou supplementary material S1

Appendix

Download Zhou supplementary material S1(File)
File 44 KB