Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T14:06:54.532Z Has data issue: false hasContentIssue false

Suppressing Electron Exposure Artifacts: An Electron Scanning Paradigm with Bayesian Machine Learning

Published online by Cambridge University Press:  26 July 2016

Karl Hujsak
Affiliation:
Department of Materials Science & Engineering, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA
Benjamin D. Myers
Affiliation:
Department of Materials Science & Engineering, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA Electron Probe and Instrumentation Center, NUANCE, Northwestern University, 2220 Campus Dr, 2036 Cook Hall, Evanston, IL 60208, USA
Eric Roth
Affiliation:
Department of Materials Science & Engineering, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA Electron Probe and Instrumentation Center, NUANCE, Northwestern University, 2220 Campus Dr, 2036 Cook Hall, Evanston, IL 60208, USA
Yue Li
Affiliation:
Applied Physics Program, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA
Vinayak P. Dravid*
Affiliation:
Department of Materials Science & Engineering, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA Electron Probe and Instrumentation Center, NUANCE, Northwestern University, 2220 Campus Dr, 2036 Cook Hall, Evanston, IL 60208, USA Applied Physics Program, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA
*
*Corresponding author. v-dravid@northwestern.edu
Get access

Abstract

Electron microscopy of biological, polymeric, and other beam-sensitive structures is often hampered by deleterious electron beam interactions. In fact, imaging of such beam-sensitive materials is limited by the allowable radiation dosage rather that capabilities of the microscope itself, which has been compounded by the availability of high brightness electron sources. Reducing dwell times to overcome dose-related artifacts, such as radiolysis and electrostatic charging, is challenging due to the inherently low contrast in imaging of many such materials. These challenges are particularly exacerbated during dynamic time-resolved, fluidic cell imaging, or three-dimensional tomographic reconstruction—all of which undergo additional dosage. Thus, there is a pressing need for the development of techniques to produce high-quality images at ever lower electron doses. In this contribution, we demonstrate direct dose reduction and suppression of beam-induced artifacts through under-sampling pixels, by as much as 80% reduction in dosage, using a commercial scanning electron microscope with an electrostatic beam blanker and a dictionary learning in-painting algorithm. This allows for multiple sparse recoverable images to be acquired at the cost of one fully sampled image. We believe this approach may open new ways to conduct imaging, which otherwise require compromising beam current and/or exposure conditions.

Type
Technique and Instrumentation Development
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, H.S., Ilic-Helms, J., Rohrer, B., Wheeler, J. & Larson, K. (2013). Sparse imaging for fast electron microscopy. In IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, Burlingame, California, USA, February 3, 2013, pp. 86570C–86512.Google Scholar
Baraniuk, R.G. (2007). Compressive sensing. IEEE Signal Process Mag 24(4), 118124.Google Scholar
Binev, P., Dahmen, W., DeVore, R., Lamby, P., Savu, D. & Sharpley, R. (2012). Compressed Sensing and Electron Microscopy. New York Dordrecht Heidelberg London: Springer.Google Scholar
Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A. & Sanche, L. (2000). Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287(5458), 16581660.CrossRefGoogle ScholarPubMed
Bursill, L., Thomas, J. & Rao, K.-J. (1981). Stability of zeolites under electron irradiation and imaging of heavy cations in silicates. Nature 289(5794), 157158.CrossRefGoogle Scholar
Candes, E. & Romberg, J. (2007). Sparsity and incoherence in compressive sampling. Inverse Probl 23(3), 969.Google Scholar
Candès, E.J., Romberg, J. & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2), 489509.Google Scholar
Coates, I.A. & Smith, D.K. (2010). Hierarchical assembly—dynamic gel–nanoparticle hybrid soft materials based on biologically derived building blocks. J Mater Chem 20(32), 66966702.Google Scholar
Cosslett, V. (1978). Radiation damage in the high resolution electron microscopy of biological materials: A review. J Microsc 113(2), 113129.Google Scholar
d’Alfonso, A., Freitag, B., Klenov, D. & Allen, L. (2010). Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Phys Rev B 81(10), 100101.CrossRefGoogle Scholar
de Jonge, N., Peckys, D.B., Kremers, G. & Piston, D. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci 106(7), 21592164.CrossRefGoogle ScholarPubMed
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6(11), 695704.Google Scholar
Donoho, D.L. (2006). Compressed sensing. IEEE Trans Inf Theory 52(4), 12891306.Google Scholar
Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.E. & Baraniuk, R.G. (2008). Single-pixel imaging via compressive sampling. IEEE Signal Process Mag 25(2), 83.Google Scholar
Egerton, R., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35(6), 399409.CrossRefGoogle ScholarPubMed
Glaeser, R.M. & Taylor, K.A. (1978). Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: A review. J Microsc 112(1), 127138.Google Scholar
Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Pisana, S., Parvez, A. & Cervantes-Sodi, F. (2007). In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7(3), 602608.Google Scholar
Isaacson, M., Johnson, D. & Crewe, A. (1973). Electron beam excitation and damage of biological molecules; its implications for specimen damage in electron microscopy. Radiat Res 55(2), 205224.CrossRefGoogle ScholarPubMed
Kimoto, K., Asaka, T., Nagai, T., Saito, M., Matsui, Y. & Ishizuka, K. (2007). Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450(7170), 702704.Google Scholar
Kotakoski, J., Jin, C., Lehtinen, O., Suenaga, K. & Krasheninnikov, A. (2010). Electron knock-on damage in hexagonal boron nitride monolayers. Phys Rev B 82(11), 113404.Google Scholar
Li, W.-J., Mauck, R.L., Cooper, J.A., Yuan, X. & Tuan, R.S. (2007). Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40(8), 16861693.Google Scholar
Liu, Y., Lin, X.-M., Sun, Y. & Rajh, T. (2013). In situ visualization of self-assembly of charged gold nanoparticles. J Am Chem Soc 135(10), 37643767.Google Scholar
Luttun, A., Tjwa, M., Moons, L., Wu, Y., Angelillo-Scherrer, A., Liao, F., Nagy, J.A., Hooper, A., Priller, J. & De Klerck, B. (2002). Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8), 831840.Google Scholar
Park, S.Y., Lytton-Jean, A.K., Lee, B., Weigand, S., Schatz, G.C. & Mirkin, C.A. (2008). DNA-programmable nanoparticle crystallization. Nature 451(7178), 553556.CrossRefGoogle ScholarPubMed
Saghi, Z., Benning, M., Leary, R., Macias-Montero, M., Borras, A. & Midgley, P.A. (2015). Reduced-dose and high-speed acquisition strategies for multi-dimensional electron microscopy. Adv Struct Chem Imaging 1(1), 110.Google Scholar
Shih, T.K., Chang, R.-C., Lu, L.-C., Ko, W.-C. & Wang, C.-C. (2004). Adaptive digital image inpainting. In 18th International Conference on Advanced Information Networking and Applications, AINA 2004., IEEE, Fukuoka, Japan, March 30, 2004, pp. 71–76.CrossRefGoogle Scholar
Stanciu, S.G., Hristu, R. & Stanciu, G.A. (2011). Digital image inpainting and microscopy imaging. Microsc Res Tech 74(11), 10491057.CrossRefGoogle ScholarPubMed
Stevens, A., Yang, H., Carin, L., Arslan, I. & Browning, N.D. (2014). The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images. Microscopy 63(1), 4151.CrossRefGoogle ScholarPubMed
Talmon, Y. (1996). Transmission electron microscopy of complex fluids: The state of the art. Ber Bunsenges Phys Chem 100(3), 364372.Google Scholar
Teweldebrhan, D. & Balandin, A. (2009). Modification of graphene properties due to electron-beam irradiation. Appl Phys Lett 94(1), 013101.Google Scholar
Wang, Z., Bovik, A.C., Sheikh, H.R. & Simoncelli, E.P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13(4), 600612.CrossRefGoogle ScholarPubMed
Williams, J., Elliman, R., Brown, W. & Seidel, T. (1985). Dominant influence of beam-induced interface rearrangement on solid-phase epitaxial crystallization of amorphous silicon. Phys Rev Lett 55(14), 1482.CrossRefGoogle ScholarPubMed
Woehl, T.J., Jungjohann, K.L., Evans, J.E., Arslan, I., Ristenpart, W.D. & Browning, N.D. (2013). Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 5363.CrossRefGoogle ScholarPubMed
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077), 6164.Google Scholar
Zhou, M., Chen, H., Paisley, J., Ren, L., Li, L., Xing, Z., Dunson, D., Sapiro, G. & Carin, L. (2012). Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Trans Image Process 21(1), 130144.CrossRefGoogle ScholarPubMed
Zhou, M., Chen, H., Ren, L., Sapiro, G., Carin, L. & Paisley, J.W. (2009). Non-parametric Bayesian dictionary learning for sparse image representations. In Advances in Neural Information Processing Systems, Vancouver, Canada, December 7, 2010, pp. 2295–2303.Google Scholar