Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T10:58:41.841Z Has data issue: false hasContentIssue false

System for In Situ UV-Visible Illumination of Environmental Transmission Electron Microscopy Samples

Published online by Cambridge University Press:  14 January 2013

Benjamin K. Miller
Affiliation:
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287-6106, USA
Peter A. Crozier*
Affiliation:
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287-6106, USA
*
*Corresponding author. E-mail: crozier@asu.edu
Get access

Abstract

A system for illuminating a sample in situ with visible and ultraviolet light inside a transmission electron microscope was devised to study photocatalysts. There are many mechanical and optical factors that must be considered when designing and building such a system. Some of the restrictions posed by the electron microscope column are significant, and care must be taken not to degrade the microscope's electron-optical performance or to unduly restrict the other capabilities of the microscope. We discuss the nature of the design considerations, as well as the practical implementation and characterization of a solution. The system that has been added to an environmental transmission electron microscope includes a high brightness broadband light source with optical filters, a fiber to guide the light to the sample, and a mechanism for precisely aligning the fiber tip.

Type
Software, Techniques, and Equipment Development
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, L.F., Overbury, S.H., Bigelow, W.C., Katz, M.B., Nackashi, D.P. & Damiano, J. (2012). Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc Microanal 18, 656666.CrossRefGoogle ScholarPubMed
Bell, A.T., Gates, B.C., Ray, D. & Thompson, M.R. (2008). Basic Research Needs: Catalysis for Energy. Washington, DC: U.S. Department of Energy Basic Energy Sciences Workshop.Google Scholar
Boyes, E. & Gai, P. (1997). Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219232.CrossRefGoogle Scholar
Butler, E.P. & Hale, K.F. (1981). Practical Methods in Electron Microscopy. Vol. 9, Dynamic Experiments in the Electron Microscope. Kidlington, Oxfordshire, UK: Elsevier Science Ltd. Google Scholar
Cavalca, F., Laursen, A., Kardynal, B.E., Dunin-Borkowski, R., Dahl, S., Wagner, J. & Hansen, T.W. (2012). In situ transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology 23, 075705. CrossRefGoogle ScholarPubMed
Chenna, S. & Crozier, P.A. (2012a). Operando transmission electron microscopy: A technique for detection of catalysis using electron energy-loss spectroscopy in the transmission electron microscope. ACS Catal 2(11), 23952402.Google Scholar
Chenna, S. & Crozier, P.A. (2012b). In situ environmental transmission electron microscopy to determine transformation pathways in supported Ni nanoparticles. Micron 43, 11881194.Google Scholar
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M. & Zandbergen, H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.Google Scholar
Crozier, P.A. & Chenna, S. (2011). In situ analysis of gas composition by electron energy-loss spectroscopy for environmental transmission electron microscopy. Ultramicroscopy 111, 177185.Google Scholar
Crozier, P.A., Wang, R. & Sharma, R. (2008). In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes. Ultramicroscopy 108, 14321440.CrossRefGoogle ScholarPubMed
Dömer, H. & Bostanjoglo, O. (2003). High-speed transmission electron microscope. Rev Sci Instrum 74, 43694372.Google Scholar
Fujishima, A., Zhang, X. & Tryk, D.A. (2008). TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63, 515582.CrossRefGoogle Scholar
Gai, P.L. (1999). Environmental high resolution electron microscopy of gas-catalyst reactions. Top Catal 8, 97113.Google Scholar
Giorgio, S., Sao Joao, S., Nitsche, S., Chaudanson, D., Sitja, G. & Henry, C.R. (2006). Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows. Ultramicroscopy 106, 503507.CrossRefGoogle ScholarPubMed
Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S. & Topsoe, H. (2002). Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 20532055.CrossRefGoogle ScholarPubMed
Jinschek, J.R. & Helveg, S. (2012). Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43, 11561168.Google Scholar
Kamat, P.V. (2002). Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106, 77297744.Google Scholar
Kudo, A. & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38, 253278.CrossRefGoogle ScholarPubMed
LaGrange, T., Campbell, G.H., Reed, B.W., Taheri, M., Pesavento, J.B., Kim, J.S. & Browning, N.D. (2008). Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM). Ultramicroscopy 108, 14411449.CrossRefGoogle ScholarPubMed
Li, P., Liu, J., Nag, N. & Crozier, P.A. (2009). In situ preparation of Ni–Cu/TiO2 bimetallic catalysts. J Catal 262, 7382.Google Scholar
Parkinson, G.M. (1989). High resolution, in-situ controlled atmosphere transmission electron microscopy (CATEM) of heterogeneous catalysts. Catal Lett 2, 303307.CrossRefGoogle Scholar
Poncharal, P. (1999). Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 15131516.Google Scholar
Shindo, D., Takahashi, K., Murakami, Y., Yamazaki, K., Deguchi, S., Suga, H. & Kondo, Y. (2009). Development of a multifunctional TEM specimen holder equipped with a piezodriving probe and a laser irradiation port. J Electron Microsc 58, 245249.CrossRefGoogle Scholar
Solanski, C.S. (2009). Solar Photovoltaics: Fundamentals, Technologies and Applications. New Delhi, India: PHI Learning.Google Scholar
Stach, E.A., Freeman, T., Minor, A.M., Owen, D.K., Cumings, J., Wall, M.A., Chraska, T., Hull, R., Morris, J., Zettl, A. & Dahmen, U. (2001). Development of a nanoindenter for in situ transmission electron microscopy. Microsc Microanal 7, 507517.Google Scholar
Taheri, M.L., Lagrange, T., Reed, B.W., Armstrong, M.R., Campbell, G.H., DeHope, W.J., Kim, J.S., King, W.E., Masiel, D.J. & Browning, N.D. (2009). Laser-based in situ techniques: Novel methods for generating extreme conditions in TEM samples. Microsc Res Techniq 72, 122130.Google Scholar
Wagner, J.B., Cavalca, F., Damsgaard, C.D., Duchstein, L.D.L. & Hansen, T.W. (2012). Exploring the environmental transmission electron microscope. Micron 43, 11691175.Google Scholar
Wang, R., Crozier, P.A., Sharma, R. & Adams, J.B. (2008). Measuring the redox activity of individual catalytic nanoparticles in cerium-based oxides. Nano Lett 8, 962967.Google Scholar
Yoshida, K., Nozaki, T., Hirayama, T. & Tanaka, N. (2007). In situ high-resolution transmission electron microscopy of photocatalytic reactions by excited electrons in ionic liquid. J Electron Microsc 56, 177180.Google Scholar
Yoshida, K., Yamasaki, J. & Tanaka, N. (2004). In situ high-resolution transmission electron microscopy observation of photodecomposition process of poly-hydrocarbons on catalytic TiO2 films. Appl Phys Lett 84, 25422544.Google Scholar
Yoshida, M., Takanabe, K., Maeda, K., Ishikawa, A., Kubota, J., Sakata, Y., Ikezawa, Y. & Domen, K. (2009). Role and function of noble-metal/Cr-layer core/shell structure cocatalysts for photocatalytic overall water splitting studied by model electrodes. J Phys Chem C 113, 1015110157.Google Scholar
Zhang, L., Miller, B. & Crozier, P.A. (2012a). CdS sensitized TiO2 nanorod photocatalysts under light exposure in the environmental TEM. Microsc Microanal 18(Suppl 2), 12981299.CrossRefGoogle Scholar
Zhang, L., Miller, B. & Crozier, P.A. (2012b). In situ analysis of TiO2 photocatalysts under light exposure in the environmental TEM. Microsc Microanal 18(Suppl 2), 11261127.Google Scholar