Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T14:46:14.619Z Has data issue: false hasContentIssue false

TEM Study on the Middle Temperature Brittleness of HiSiMo Cast Irons at 400˚C

Published online by Cambridge University Press:  22 July 2022

Wenhui Zhu
Affiliation:
Research and Innovation Center, Ford Motor Company; Dearborn, MI, USA
Larry Godlewski
Affiliation:
Research and Innovation Center, Ford Motor Company; Dearborn, MI, USA
Simon Lekakh
Affiliation:
Missouri University of Science and Technology, Rolla, MO, USA
Bita Ghaffari
Affiliation:
Research and Innovation Center, Ford Motor Company; Dearborn, MI, USA
Carlos Engler-Pinto
Affiliation:
Research and Innovation Center, Ford Motor Company; Dearborn, MI, USA
Mei Li
Affiliation:
Research and Innovation Center, Ford Motor Company; Dearborn, MI, USA

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Quantitative and Qualitative Mapping of Materials
Copyright
Copyright © Microscopy Society of America 2022

References

Guo, H., Jia, W., and Ahdad, F., “Modeling and Simulation of Tube with HiSiMo Ductile Iron under High Speed Impact,” (SAE International, Warrendale) SAE Technical Paper. doi: 10.4271/2018-01-0097.CrossRefGoogle Scholar
Park, S. H. et al. , “Development of a Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds,” (2005), p. 2005-01–1688. doi: 10.4271/2005-01-1688CrossRefGoogle Scholar
Li, D. et al. , “Solidification Behavior, Microstructure, Mechanical Properties, Hot Oxidation and Thermal Fatigue Resistance of High Silicon SiMo Nodular Cast Irons,” (2004), p. 2004-01–0792. doi: 10.4271/2004-01-0792CrossRefGoogle Scholar
Wang, X. et al. , Metals (9, 6), 6. doi: 10.3390/met9060648CrossRefGoogle Scholar
Avery, K., Pan, J., and Engler-Pinto, C., “Effect of Temperature Cycle on Thermomechanical Fatigue Life of a High Silicon Molybdenum Ductile Cast Iron,” SAE Technical Paper (2015).CrossRefGoogle Scholar
Trelles, E. G. and Schweizer, C., Int. J. Fatigue (155), p. 106592. doi: 10.1016/j.ijfatigue.2021.106592Google Scholar
Delin, L. et al. , SAE Trans. (116) (2007), p. 530.Google Scholar
Wright, R. N. and Farrell, T. R., AFS Trans 93 (1985), p. 853.Google Scholar
“Prevention of Elevated Temperature Brittleness in Ferritic Ductile Iron by Phosphorus,” https://www.jstage.jst.go.jp/article/jfes/69/4/69_4_304/_article (accessed Nov. 30, 2021).Google Scholar
Yanagisawa, O. and Lui, T. S., Trans. Jpn. Inst. Met. 24 (1983), 12, p. 858. doi: 10.2320/matertrans1960.24.858CrossRefGoogle Scholar
Borgström, H., Minerals (11, 4), 4 (2021). doi: 10.3390/min11040391CrossRefGoogle Scholar
Trelles, E. G., Eckmann, S., and Schweizer, C., Int. J. Fatigue 155 (2022), p. 106573. doi: 10.1016/j.ijfatigue.2021.106573CrossRefGoogle Scholar
Wu, X. et al. , Metall. Mater. Trans. A 45, 11 (2014), p. 5085. doi: 10.1007/s11661-014-2468-xCrossRefGoogle Scholar
Wright, R. N. and Farrell, T. R., AFS Trans 93 (1985), p. 853.Google Scholar
Avery, K. R., “A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation,” https://ui.adsabs.harvard.edu/abs/2016PhDT……..74A (Accessed Nov. 30, 2021).CrossRefGoogle Scholar
Lekakh, S. N. et al. , Metall. Mater. Trans. B 51, 6 (2020), p. 2542. doi: 10.1007/s11663-020-01975-wGoogle Scholar
The authors would like to thank the financial support by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (Vehicle Technologies Office, Propulsion Materials Program) under Award No. DE-EE0008458.Google Scholar