Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T12:35:14.130Z Has data issue: false hasContentIssue false

Temperature-Stimulated Morphological Features of Advanced High-Strength Medium-Mn TRIP Steel

Published online by Cambridge University Press:  02 February 2022

Aleksandra Kozłowska
Affiliation:
Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
Adam Grajcar*
Affiliation:
Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
Krzysztof Matus
Affiliation:
Materials Research Laboratory, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
Aleksandra Janik
Affiliation:
Łukasiewicz Research Network – Institute for Ferrous Metallurgy, 12-14 K. Miarki Street, 44-100 Gliwice, Poland
Krzysztof Radwański
Affiliation:
Łukasiewicz Research Network – Institute for Ferrous Metallurgy, 12-14 K. Miarki Street, 44-100 Gliwice, Poland
Wojciech Pakieła
Affiliation:
Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
*
*Corresponding author: Adam Grajcar, E-mail: adam.grajcar@polsl.pl
Get access

Abstract

Advanced High-Strength Steels (AHSSs) are one of the most rapidly developing group of Fe-based metallic materials. Their excellent combination of high strength, ductility and formability is due to their complex microstructure and strain-induced martensitic transformation of metastable retained austenite (RA), which favors extra ductility of the sheet steels. A deformation temperature is one of the most important factors affecting the phase transformation behavior in these Fe–C–Mn–Al–Si systems. Therefore, the present study aimed at understanding the temperature-dependent phase transformations and structural phenomena in an advanced medium-Mn–Al-alloyed steel. The 3Mn steel was thermomechanically processed and subjected to tensile testing in a temperature range from 20°C to 200°C. The different extent of the strain-induced martensitic transformation and some softening phenomena of bainitic ferrite matrix were revealed using transmission electron microscopy and electron backscatter diffraction techniques. It was found that the thermal stability of RA is strongly dependent on the deformation temperature. Moreover, the dynamic recovery and carbide precipitation play a key role when the deformation temperature is increased to 140°C and higher temperatures.

Type
The XVIIth International Conference on Electron Microscopy (EM2020)
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ASTM International (2013). ASTM E8/E8M–13a: Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken, PA, USA: ASTM International.Google Scholar
De Knijf, D, Föjer, C, Kestens, LAI & Petrov, R (2015). Factors influencing the austenite stability during tensile testing of quenching and partitioning steel determined via in-situ electron backscatter diffraction. Mater Sci Eng A 638, 219227. doi:10.1016/j.msea.2015.04.075CrossRefGoogle Scholar
Feng, W, Wu, Z, Wang, L & Speer, JG (2013). Effect of testing temperature on retained austenite stability of cold rolled CMnsi steels treated by quenching and partitioning process. Steel Res Int 84, 246252. doi:10.1002/srin.201200129CrossRefGoogle Scholar
Finfrock, CB, Thun, MM, Bhattacharya, D, Ballard, TJ, Clarke, AJ & Clarke, KD (2021). Strain rate dependent ductility and strain hardening in Q&P steels. Metall Mater Trans A 52, 928942. doi:10.1007/s11661-020-06127-yCrossRefGoogle Scholar
Garcia-Mateo, C, Caballero, FG, Chao, J, Capdevila, C & Garcia de Andres, C (2009). Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels. J Mater Sci 44, 46174624. doi:10.1007/s10853-009-3704-4CrossRefGoogle Scholar
Grajcar, A, Płachcińska, A, Topolska, S & Kciuk, M (2015). Effect of thermomechanical treatment on the corrosion behavior of Si and Al-containing high-Mn austenitic steel with Nb and Ti microaddition. Mater Tehnol 49, 889894. doi:10.17222/mit.2014.148CrossRefGoogle Scholar
Grajcar, A, Zalecki, W, Burian, W & Kozłowska, A (2016). Phase equilibrium and austenite decomposition in advanced high-strength medium-Mn bainitic steels. Metals 248. doi:10.3390/met6100248.Google Scholar
Gramlich, A, Emmrich, R & Bleck, W (2019). Austenite reversion tempering-annealing of 4 wt% manganese steels for automotive forging application. Metals 9, 575. doi:10.3390/met9050575CrossRefGoogle Scholar
Gronostajski, Z, Niechajowicz, A, Kuziak, R, Krawczyk, J & Polak, S (2017). The effect of the strain rate on the stress-strain curve and microstructure of AHSS. J Mater Process Technol 242, 246259. doi:10.1016/j.jmatprotec.2016.11.023CrossRefGoogle Scholar
Hidalgo, J, Findley, KO & Santofimia, MJ (2017). Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering. Mater Sci Eng A 690, 337347. doi:10.1016/j.msea.2017.03.017CrossRefGoogle Scholar
Hu, J, Du, LX, Dong, Y, Meng, QW & Misra, RDK (2019). Effect of Ti variation on microstructure evolution and mechanical properties of low carbon medium Mn heavy plate steel. Mater Charact 152, 2135. doi:10.1016/j.matchar.2019.04.004CrossRefGoogle Scholar
Jimenez-Melero, E, Van Dijk, N, Zhao, L, Sietsma, J & Offerman, S (2017). Martensitic transformation of individual grains in low-alloyed TRIP steels. Scr Mater 55, 67136723. doi:10.1016/j.scriptamat.2006.10.041Google Scholar
Kaar, S, Krizan, D, Schneider, R & Sommitsch, C (2020). Impact of Si and Al on microstructural evolution and mechanical properties of lean medium Mn quenching and partitioning steels. Steel Res Int 91, 2000181. doi:10.1002/srin.202000181CrossRefGoogle Scholar
Kozłowska, A, Grzegorczyk, B, Staszuk, M, Nuckowski, PM & Grajcar, A (2019 a). An analysis of plastic deformation instabilities at elevated temperatures in hot-rolled medium-Mn steel. Materials 12, 4184. doi:10.3390/ma12244184CrossRefGoogle ScholarPubMed
Kozłowska, A, Janik, A, Radwański, K & Grajcar, A (2019 b). Microstructure evolution and mechanical stability of retained austenite in medium-Mn steel deformed at different temperatures. Materials 12, 3042. doi:10.3390/ma12183042CrossRefGoogle ScholarPubMed
Kozłowska, A, Radwański, K, Matus, K, Samek, L & Grajcar, A (2021). Mechanical stability of retained austenite in aluminum-containing medium-Mn steel deformed at different temperatures. Arch Civ Mech Eng 21. [Online access]. doi:10.1007/s43452-021-00177-8Google Scholar
Lee, D, Kim, JK, Lee, S, Lee, K & De Cooman, BC (2017). Microstructures and mechanical properties of Ti and Mo micro-alloyed medium Mn steel. Mater Sci Eng A 706, 114. doi:10.1016/j.msea.2017.08.110CrossRefGoogle Scholar
Luo, L, Li, W, Wang, L, Zhou, S & Jin, X (2017). Tensile behaviors and deformation mechanism of a medium Mn-TRIP steel at different temperatures. Mater Sci Eng A 682, 698703. doi:10.1016/j.msea.2016.11.017CrossRefGoogle Scholar
Ma, Y, Sun, B, Schökel, A, Song, W, Ponge, D, Raabe, D & Bleck, W (2020). Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels. Acta Mater 200, 389403. doi:10.1016/j.actamat.2020.09.007CrossRefGoogle Scholar
Mueller, JJ, Hu, X, Sun, X, Ren, Y, Choi, K, Barker, E, Speer, JG, Matlock, DK & De Moor, E (2021). Austenite formation and cementite dissolution during intercritical annealing of a medium-manganese steel from a martensitic condition. Mater Des 203, 109598. doi:10.1016/j.matdes.2021.109598CrossRefGoogle Scholar
Mukherjee, M, Mohanty, ON, Hashimoto, S, Hojo, T & Sugimoto, K (2006). Strain-induced transformation behaviour of retained austenite and tensile properties of TRIP-aided steels with different matrix microstructure. ISIJ Int 46, 316324. doi:10.2355/isijinternational.46.316CrossRefGoogle Scholar
Pereira, MP & Rolfe, BF (2014). Temperature conditions during “cold” sheet metal stamping. J Mater Process Technol 214, 17491758. doi:10.1016/j.jmatprotec.2014.03.020CrossRefGoogle Scholar
Podder, AS & Bhadeshia, HKDH (2010). Thermal stability of austenite retained in bainitic steels. Mater Sci Eng A 527, 21212128. doi:10.1016/j.msea.2009.11.063CrossRefGoogle Scholar
Polatidis, E, Haidemenopoulos, GN, Krizan, D, Aravas, N, Panzner, T, Smíd, M, Papadioti, I, Casati, N, Van Petegem, S & Van Swygenhoven, H (2021). The effect of stress triaxiality on the phase transformation in transformation induced plasticity steels: Experimental investigation and modelling the transformation kinetics. Mater Sci Eng A 800, 140321. doi:10.1016/j.msea.2020.140321CrossRefGoogle Scholar
Poling, WA, De Moor, E, Speer, JG & Findley, KO (2021). Temperature effects on tensile deformation behavior of a medium manganese TRIP steel and a quenched and partitioned steel. Metals 11, 375. doi:10.3390/met11020375CrossRefGoogle Scholar
Raabe, D, Sun, B, Kwiatkowski Da Silva, A, Gault, B, Yen, HW, Sedighiani, K, Sukumar, PH, Souza Filho, IR, Katnagallu, S, Jagle, E, Kurnsteiner, P, Kusampudi, N, Stephenson, L, Herbig, M, Liebscher, CH, Springer, H, Zaefferer, S, Shah, V, Wong, SL, Baron, C, Diehl, M, Roters, F & Ponge, D (2020). Current challenges and opportunities in microstructure-related properties of advanced high-strength steels. Metall Mater Trans A 51, 55175586. doi:10.1007/s11661-020-05947-2CrossRefGoogle Scholar
Rong, T, Lin, L, De Cooman, BC, Xi-chen, W & Peng, S (2006). Effect of temperature and strain rate on dynamic properties of low silicon TRIP steel. J Iron Steel Res Int 13, 5156. doi:10.1016/S1006-706X(06)60061-7Google Scholar
Shen, YF, Qiu, LN, Sun, X, Zuo, L, Liaw, PK & Raabe, D (2015). Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels. Mater Sci Eng A 636, 551564. doi:10.1016/j.msea.2015.04.030CrossRefGoogle Scholar
Sozańska-Jędrasik, L, Mazurkiewicz, J, Borek, W & Matus, K (2018). Carbides analysis of the high strength and low density Fe-Mn-Al-Si steels. Arch Metall Mater 63, 265275. doi:10.24425/118937Google Scholar
Sugimoto, K (2020). Performance of mechanical properties of ultra high-strength ferrous steels related to strain-induced transformation. Metals 10, 875. doi:10.3390/met10070875CrossRefGoogle Scholar
Timokhina, IB, Hodgson, PD & Pereloma, EV (2004). Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Mater Trans A 35, 23312341. doi:10.1007/s11661-006-0213-9CrossRefGoogle Scholar
Zaefferer, S, Ohlert, J & Bleck, W (2004). A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater 52, 27652778. doi:10.1016/j.actamat.2004.02.044CrossRefGoogle Scholar