Published online by Cambridge University Press: 15 September 2014
Recent studies have shown that when graphene is placed on a thin hexagonal boron nitride (h-BN) substrate, unlike when it is placed on a typical SiO2 surface, it can closely approach the ideal carrier mobility observed in suspended graphene samples. This study further examines the epitaxial relationship between graphene and h-BN substrate with high-resolution transmission electron microscopy simulation. Virtual monolayer and multilayer stacks of h-BN were produced with a monolayer of graphene on top, on bottom, and in between h-BN layers, in order to study this interface. Once the simulations were performed, the phase contrast image and Moiré pattern created by this heterostack were analyzed for local and global intensity minima and maxima. In addition, h-BN substrate thickness and rotations between h-BN and graphene were probed and analyzed. The simulated images produced in this work will be used to help understand subsequent transmission electron microscopy images and electron energy-loss studies.