Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T13:15:44.699Z Has data issue: false hasContentIssue false

Three-Dimensional X-Ray Imaging and Analysis of Fungi on and in Wood

Published online by Cambridge University Press:  27 August 2009

Jan Van den Bulcke*
Affiliation:
Laboratory of Wood Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
Matthieu Boone
Affiliation:
Department for Subatomic and Radiation Physics, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
Joris Van Acker
Affiliation:
Laboratory of Wood Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
Luc Van Hoorebeke
Affiliation:
Department for Subatomic and Radiation Physics, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
*
Corresponding author. E-mail: Jan.VandenBulcke@UGent.be
Get access

Abstract

As wood is prone to fungal degradation, fundamental research is necessary to increase our knowledge aiming at product improvement. Several imaging modalities are capable of visualizing fungi, but the X-ray equipment presented in this article can envisage fungal mycelium in wood nondestructively in three dimensions with submicron resolution. Four types of wood subjected to the action of the white rot fungus Coriolus versicolor (Linnaeus) Quélet (CTB 863 A) were scanned using an X-ray-based approach. Comparison of wood volumes before and after fungal exposure, segmented manually or semiautomatically, showed the presence of the fungal mass on and in the wood samples and therefore demonstrated the usefulness of computed X-ray tomography for mycological and wood research. Further improvements to the experimental setup are necessary to resolve individual hyphae and enhance segmentation.

Type
Tomography Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abu Ali, R., Murphy, R.J. & Dickinson, D.J. (1999). Investigation of the extracellular mucilaginous materials produced by some wood decay fungi. Mycol Res 103, 14531461.CrossRefGoogle Scholar
Bardage, S.L. & Daniel, G. (1997). The ability of fungi to penetrate micropores: Implications for wood surface coatings. Mater Org 31, 233245.Google Scholar
Beckett, A. & Read, N. (1986). Low temperature scanning electron microscopy. In Ultrastructural Techniques for Microorganisms, Aldrich, H.C. & Todd, W.F. (Eds.), pp. 4586. New York: Plenum Press.CrossRefGoogle Scholar
Boone, M., De Witte, Y., Dierick, M., Van den Bulcke, J., Vlassenbroeck, J. & Van Hoorebeke, L. (2009). Practical use of the Modified Bronnikov Algorithm in micro-CT. Nucl Instrum Meth B 267, 11821186.CrossRefGoogle Scholar
Bronnikov, A.V. (2002). Theory of quantitative phase-contrast computed tomography. J Opt Soc Am A 19, 472480.CrossRefGoogle ScholarPubMed
Crum, W.R., Hartkens, T. & Hill, D.L.G. (2004). Non-rigid image registration: Theory and practice. Br J Radiol 77, S140S153.CrossRefGoogle ScholarPubMed
Dadachova, E., Bryan, R.A., Huang, X., Moadel, T., Schweitzer, A.D., Aisen, P., Nosanchuk, J.D. & Casadevall, A. (2007). Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE 2, e457.CrossRefGoogle ScholarPubMed
Daniel, G., Volc, J. & Niku-Paavola, M.L. (2004). Cryo-FE-SEM & TEM immuno-techniques reveal new details for understanding white-rot decay of lignocellulose. C R Biol 327, 861871.CrossRefGoogle ScholarPubMed
Dickson, S. & Kolesik, P. (1999). Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9, 205213.CrossRefGoogle Scholar
Eriksson, K.-E., Blanchette, R.A. & Ander, P. (1990). Microbial and Enzymatic Degradation of Wood and Wood Components. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Falconer, R.E., Bown, J.L., White, N.A. & Crawford, J.W. (2005). Biomass recycling and the origin of phenotype in fungal mycelia. Proc R Soc Lon B Bio 272, 17271734.Google ScholarPubMed
Glocker, B., Komodakis, N., Paragios, N., Tziritas, G. & Navab, N. (2007). Inter and intra-modal deformable registration: Continuous deformations meet efficient optimal linear programming. In Proceedings of the 20th International Conference on Information Processing in Medical Imaging, Karssemeijer, N.L.B. (Ed.), pp. 408420. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Green, F. & Highley, T.L. (1997). Mechanism of brown-rot decay: Paradigm or paradox. Int Biodeterior Biodegrad 39, 113124.CrossRefGoogle Scholar
Groso, A., Abela, R. & Stampanoni, M. (2006). Implementation of a fast method for high resolution phase contrast tomography. Opt Express 14, 81038110.CrossRefGoogle ScholarPubMed
Gutiérrez, A., Martinez, M.J., Almendros, G., Gonzalezvila, F.J. & Martinez, A.T. (1995). Hyphal-sheath polysaccharides in fungal deterioration. Sci Total Environ 167, 315328.CrossRefGoogle Scholar
Hickey, P.C., Swift, S.R., Roca, M.G. & Read, N.D. (2005). Live-cell imaging of filamentous fungi using vital fluorescent dyes. Method Microbiol 34, 6387.CrossRefGoogle Scholar
Illman, B.L. & Dowd, B.A. (1999). High-resolution microtomography for density and spatial information about wood structures. In Proceedings of SPIE on Developments in X-ray Tomography II, Bonse, U. (Ed.), pp. 198204. Washington, DC: Society of Photo-Optical Instrumentation Engineers.Google Scholar
Komodakis, N., Tziritas, G. & Paragios, N. (2007). Fast, approximately optimal solutions for single and dynamic MRFs. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 960967. Minneapolis, MN: IEEE.Google Scholar
Limaye, A. (2006). Drishti—Volume Exploration and Presentation Tool. Baltimore, MD: Vis.Google Scholar
Macchioni, N., Palanti, S. & Rozenberg, P. (2007). Measurements of fungal wood decay on Scots pine and beech by means of X-ray microdensitometry. Wood Sci Technol 41, 417426.CrossRefGoogle Scholar
Mansur, M., Arias, M.E., Flardh, M. & Gonzalez, A.E. (2003). The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities. Mycologia 95, 10131020.CrossRefGoogle ScholarPubMed
Masschaele, B.C., Cnudde, V., Dierick, M., Jacobs, P., Van Hoorebeke, L. & Vlassenbroeck, J. (2007). UGCT: New X-ray radiography and tomography facility. Nucl Instrum Meth A 580, 266269.CrossRefGoogle Scholar
McMillin, C.W. (1977). SEM technique for displaying 3-dimensional structure of wood. Wood Sci 9, 202204.Google Scholar
Muller, U., Bammer, R., Halmschlager, E., Stollberger, R. & Wimmer, R. (2001). Detection of fungal wood decay using magnetic resonance imaging. Holz Roh Werkst 59, 190194.Google Scholar
Muller, U., Bammer, R. & Teischinger, A. (2002). Detection of incipient fungal attack in wood using magnetic resonance parameter mapping. Holzforsch 56, 529534.CrossRefGoogle Scholar
Nicole, M., Chamberland, H., Rioux, D., Lecours, N., Rio, B., Geiger, J.P. & Ouellette, G.B. (1993). A cytochemical study of extracellular sheaths associated with Rigidoporus lignosis during wood decay. Appl Environ Microbiol 59, 25782588.CrossRefGoogle Scholar
Nosanchuk, J.D. & Casadevall, A. (2003). The contribution of melanin to microbial pathogenesis. Cell Microbiol 5, 203223.CrossRefGoogle ScholarPubMed
Nosanchuk, J.D. & Casadevall, A. (2006). Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 50, 35193528.CrossRefGoogle ScholarPubMed
Råberg, U., Terziev, N. & Land, C.J. (2009). Early soft rot colonization of Scots sapwood pine in above-ground exposure. Int Biodeterior Biodegrad 63, 236240; DOI:10.1016/j.ibiod.2007.10.005.CrossRefGoogle Scholar
Rajapakse, C.S., Magland, J., Wehrli, S.L., Zhang, X.H., Liu, X.S., Guo, X.E. & Wehrli, F.W. (2008). Efficient 3D rigid-body registration of micro-MR and micro-CT trabecular bone images. In Medical Imaging 2008 Conference, Reinhardt, J.M.P.J.P.W. (Ed.), pp. Z9142–Z9142. San Diego, CA: International Society of Optical Engineering.Google Scholar
Rayner, A.D.M. & Boddy, L. (1988). Fungal Decomposition of Wood—Its Biology and Ecology. New York: John Wiley & Sons Ltd.Google Scholar
Refshauge, S., Watt, M., McCully, M.E. & Huang, C.X. (2006). Frozen in time: A new method using cryo-scanning electron microscopy to visualize root-fungal interactions. New Phytol 172, 369374.CrossRefGoogle Scholar
Saleh, Y.G., Mayo, M.S. & Ahearn, D.G. (1988). Resistance of some common fungi to gamma irradiation. Appl Environl Microbiol 54, 21342135.CrossRefGoogle ScholarPubMed
Schwarze, F. (2007). Wood decay under the microscope. Fungal Biol Rev 21, 133170.CrossRefGoogle Scholar
Trtik, P., Dual, J., Keunecke, D., Mannes, D., Niemz, P., Stahli, P., Kaestner, A., Groso, A. & Stampanoni, M. (2007). 3D imaging of microstructure of spruce wood. J Struct Biol 159, 4655.CrossRefGoogle ScholarPubMed
Uber, F.M. & Goddard, D.R. (1934). Influence of death criteria on the X-ray survival curves of the fungus, Neurospora. J Gen Physiol 17, 577590.CrossRefGoogle ScholarPubMed
Van den Bulcke, J., Masschaele, B., Dierick, M., Van Acker, J., Stevens, M. & Van Hoorebeke, L. (2008). Three-dimensional imaging and analysis of infested coated wood with X-ray submicron CT. Int Biodeterior Biodegrad 61, 278286.CrossRefGoogle Scholar
Vidal, F.P., Letang, J.M., Peix, G. & Cloetens, P. (2005). Investigation of artefact sources in synchrotron microtomography via virtual X-ray imaging. Nucl Instrum Meth B 234, 333348.CrossRefGoogle Scholar
Viot, P., Bernard, D. & Plougonven, E. (2007). Polymeric foam deformation under dynamic loading by the use of the microtomographic technique. J Mater Sci 42, 72027213.CrossRefGoogle Scholar
Vlassenbroeck, J., Dierick, M., Masschaele, B., Cnudde, V., Van Hoorebeke, L. & Jacobs, P. (2007). Software tools for quantification of X-ray microtomography at the UGCT. Nucl Instrum Meth A 580, 442445.CrossRefGoogle Scholar
Zhdanova, N.N., Tugay, T., Dighton, J., Zheltonozhsky, V. & McDermott, P. (2004). Ionizing radiation attracts soil fungi. Mycol Res 108, 10891096.CrossRefGoogle ScholarPubMed