Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T10:10:43.507Z Has data issue: false hasContentIssue false

Toward Single Mode, Atomic Size Electron Vortex Beams

Published online by Cambridge University Press:  07 May 2014

Ondrej L. Krivanek*
Affiliation:
Nion Co., 1102 8th St. Kirkland, WA 98033, USA
Jan Rusz
Affiliation:
Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
Juan-Carlos Idrobo
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Tracy J. Lovejoy
Affiliation:
Nion Co., 1102 8th St. Kirkland, WA 98033, USA
Niklas Dellby
Affiliation:
Nion Co., 1102 8th St. Kirkland, WA 98033, USA
*
*Corresponding author. krivanek@nion.com
Get access

Abstract

We propose a practical method of producing a single mode electron vortex beam suitable for use in a scanning transmission electron microscope (STEM). The method involves using a holographic “fork” aperture to produce a row of beams of different orbital angular momenta, as is now well established, magnifying the row so that neighboring beams are separated by about 1 µm, selecting the desired beam with a narrow slit, and demagnifying the selected beam down to 1–2 Å in size. We show that the method can be implemented by adding two condenser lenses plus a selection slit to a straight-column cold-field emission STEM. It can also be carried out in an existing instrument, the monochromated Nion high-energy-resolution monochromated electron energy-loss spectroscopy-STEM, by using its monochromator in a novel way. We estimate that atom-sized vortex beams with ≥20 pA of current should be attainable at 100–200 keV in either instrument.

Type
EDGE Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Béché, A., Van Boxem, R., Van Tendeloo, R. & Verbeeck, J. (2014). Magnetic monopole field exposed by electrons. Nat Phys 10, 2629.CrossRefGoogle Scholar
Blackburn, A.M. & Loudon, J.C. (2014). Vortex beam production and contrast enhancement from a magnetic spiral phase plate. Ultramicroscopy 136, 127143.Google Scholar
Clark, L., Béché, A., Guzzinati, G., Lubk, A., Mazilu, M., Van Boxem, R. & Verbeeck, J. (2013). Exploiting lens aberrations to create electron vortex beams. Phys Rev Lett 111, 064801.Google Scholar
Dellby, N., Bacon, N.J., Hrncirik, P., Murfitt, M.F., Skone, G.S., Szilagyi, Z.S. & Krivanek, O.L. (2011). Dedicated STEM for 200 to 40 keV operation. Eur Phys J Appl Phys 54, 33505.CrossRefGoogle Scholar
Idrobo, J.C. & Pennycook, S.J. (2011). Vortex beams for atomic resolution dichroism. J Electron Microsc 60, 205300.Google Scholar
Kolarik, V., Mankos, M. & Veneklasen, L.H. (1991). Close packed prism arrays for electron microscopy. Optik 87, 112.Google Scholar
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.Google Scholar
Krivanek, O.L., Ursin, J.P., Bacon, N.J., Corbin, G.J., Dellby, N., Hrncirik, P., Mufitt, M.F., Own, C.S. & Szilagyi, Z.S. (2009). High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Phil Trans R Soc A 367, 36833697.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Chisholm, M.F., Dellby, N. & Murfitt, M.F. (2011). Atomic-resolution STEM at low primary energies. In Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook S.J. & Nellist P.D. (Eds.), pp. 613656. New York: Springer.Google Scholar
Krivanek, O.L., Zhou, W., Chisholm, M.F., Dellby, N., Lovejoy, T.C., Ramasse, Q.M. & Idrobo, J.C. (2013 a). Gentle STEM of single atoms: Low keV imaging and analysis at ultimate detection limits. In Low Voltage Electron Microscopy: Principles and Applications, Bell D.C. & Erdman N. (Eds.), pp. 119152. Hoboken, NJ: Wiley & Sons.Google Scholar
Krivanek, O.L., Lovejoy, T.C., Dellby, N. & Carpenter, R.W. (2013 b). Monochromated STEM with a 30 meV-wide, atom-sized electron probe. Microscopy 62, 321.Google Scholar
McMorran, B.J. (2009). Electron diffraction and interferometry using nanostructures. PhD Thesis, University of Arizona, Tucson, Arizona, pp. 40–42. Available at http://arizona.openrepository.com/arizona/handle/10150/194029 Google Scholar
McMorran, B.J., Agrawal, A., Anderson, I.M., Herzing, A.A., Lezec, H.J., McClelland, J.J. & Unguris, J. (2011). Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192195.Google Scholar
Rusz, J. & Bhowmick, S. (2013). Boundaries for efficient use of electron vortex beams to measure magnetic properties. Phys Rev Lett 111, 105504.Google Scholar
Saitoh, K., Hasegawa, Y., Tanaka, N. & Uchida, M. (2012). Production of electron vortex beams carrying large orbital angular momentum using spiral zone plates. J Electron Microsc 61, 171177.Google Scholar
Schattschneider, P., Rubino, S., Hébert, C., Rusz, J., Kunes, J., Novák, P., Carlino, E., Fabrizioli, M., Panaccione, G. & Rossi, G. (2006). Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486488.Google Scholar
Schattschneider, P., Stöger-Pollach, M., Löffler, S., Steiger-Thirsfeld, A., Hell, J. & Verbeeck, J. (2012). Sub-nanometer free electrons with topological charge. Ultramicroscopy 115, 2125.Google Scholar
Tromp, R.M., Hannon, J.B., Ellis, A.W., Wan, W., Berghaus, A. & Schaff, O. (2010). A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design. Ultramicroscopy 110, 852861.Google Scholar
Uchida, M. & Tonomura, A. (2010). Generation of electron beams carrying orbital angular momentum. Nature 464, 737739.CrossRefGoogle ScholarPubMed
Verbeeck, J., Tian, H. & Schattschneider, P. (2010). Production and application of electron vortex beams. Nature 467, 301304.Google Scholar
Verbeeck, J., Schattschneider, P., Lazar, S., Stöger-Pollach, M., Löffler, S., Steiger-Thirsfeld, A. & Van Tendeloo, G. (2011). Atomic scale electron vortices for nanoresearch. Appl Phys Lett 99, 203109.CrossRefGoogle Scholar
Verbeeck, J., Tian, H. & Béché, A. (2012). A new way of producing electron vortex probes for STEM. Ultramicroscopy 113, 8387.CrossRefGoogle Scholar