Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T19:18:50.379Z Has data issue: false hasContentIssue false

A Transmission Electron Microscopy Study of CoFe2O4 Ferrite Nanoparticles in Silica Aerogel Matrix Using HREM and STEM Imaging and EDX Spectroscopy and EELS

Published online by Cambridge University Press:  04 March 2010

Andrea Falqui
Affiliation:
Dipartimento di Scienze Chimiche and INSTM, Università di Cagliari, S.P. Monserrato-Sestu Km 0.700, I-09042 Monserrato, Cagliari, Italy Istituto Italiano di Technologia, Via Morego 30, 16163 Genova, Italy
Anna Corrias
Affiliation:
Dipartimento di Scienze Chimiche and INSTM, Università di Cagliari, S.P. Monserrato-Sestu Km 0.700, I-09042 Monserrato, Cagliari, Italy
Peng Wang
Affiliation:
SuperSTEM, Daresbury Laboratory, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
Etienne Snoeck
Affiliation:
CEMES, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France
Gavin Mountjoy*
Affiliation:
Dipartimento di Scienze Chimiche and INSTM, Università di Cagliari, S.P. Monserrato-Sestu Km 0.700, I-09042 Monserrato, Cagliari, Italy
*
Corresponding author. E-mail: g.mountjoy@kent.ac.uk
Get access

Abstract

Magnetic nanocomposite materials consisting of 5 and 10 wt% CoFe2O4 nanoparticles in a silica aerogel matrix have been synthesized by the sol-gel method. For the CoFe2O4-10wt% sample, bright-field scanning transmission electron microscopy (BF STEM) and high-resolution transmission electron microscopy (HREM) images showed distinct, rounded CoFe2O4 nanoparticles, with typical diameters of roughly 8 nm. For the CoFe2O4-5wt% sample, BF STEM images and energy dispersive X-ray (EDX) measurements showed CoFe2O4 nanoparticles with diameters of roughly 3 ± 1 nm. EDX measurements indicate that all nanoparticles consist of stoichiometric CoFe2O4, and electron energy-loss spectroscopy measurements from lines crossing nanoparticles in the CoFe2O4-10wt% sample show a uniform composition within nanoparticles, with a precision of at best than ±0.5 nm in analysis position. BF STEM images obtained for the CoFe2O4-10wt% sample showed many “needle-like” nanostructures that typically have a length of ∼10 nm and a width of ∼1 nm, and frequently appear to be attached to nanoparticles. These needle-like nanostructures are observed to contain layers with interlayer spacing 0.33 ± 0.1 nm, which could be consistent with Co silicate hydroxide, a known precursor phase in these nanocomposite materials.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abeles, B. (1976). Granular metal films. In Applied Solid State Science, Wolfe, R. (Ed.), pp. 1117. New York: Academic Press.Google Scholar
Ammar, S., Helfen, A., Jouini, N., Fievet, F., Rosenman, I., Villain, F., Molinie, P. & Danot, M. (2001). Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11, 186192.CrossRefGoogle Scholar
Brinker, C.J. & Scherer, G.W. (1990). Sol-Gel Science. San Diego, CA: Academic Press.Google Scholar
Cannas, C., Casula, M.F., Concas, G., Corrias, A., Gatteschi, D., Falqui, A., Musinu, A., Sangregorio, C. & Spano, G. (2001). Magnetic properties of gamma-Fe2O3-SiO2 aerogel and xerogel nanocomposite materials. J Mater Chem 11, 31803187.CrossRefGoogle Scholar
Carta, D., Casula, M.F., Corrias, A., Falqui, A., Loche, D., Mountjoy, G. & Wang, P. (2009). Structural and magnetic characterization of Co and Ni silicate hydroxides in bulk and in nanostructures within silica aerogels. Chem Mater 21, 945953.CrossRefGoogle Scholar
Carta, D., Corrias, A., Mountjoy, G. & Navarra, G. (2007a). The structure of highly porous nanocomposite aerogels. J Non-Cryst Solids 353, 17851788.CrossRefGoogle Scholar
Carta, D., Mountjoy, G., Navarra, G., Casula, M.F., Loche, D., Marras, S. & Corrias, A. (2007b). An X-ray absorption investigation of the formation of cobalt ferrites nanoparticles in an aerogel silica matrix. J Phys Chem C 111, 63086317.CrossRefGoogle Scholar
Casas, L.I., Roig, A., Molins, E., Greneche, J.M., Asenjo, J. & Tejada, J. (2002). Iron oxide nanoparticles hosted in silica aerogels. Appl Phys A 74, 591597.CrossRefGoogle Scholar
Casu, A., Casula, M.F., Corrias, A., Falqui, A., Loche, D. & Marras, S. (2007). Magnetic and structural investigation of highly porous CoFe2O4-SiO2 nanocomposite aerogels. J Phys Chem C 111, 916922.CrossRefGoogle Scholar
Casula, M.F., Loche, D., Marras, S., Paschina, G. & Corrias, A. (2007). Role of urea in the preparation of highly porous nanocomposite aerogels. Langmuir 23, 35093512.CrossRefGoogle ScholarPubMed
Cliff, G. & Lorimer, G.W. (1975). The quantitative analysis of thin specimens. J Microsc 103, 203207.CrossRefGoogle Scholar
Congiu, F., Concas, G., Ennas, G., Falqui, A., Fiorani, D., Marongiu, G., Marras, S., Spano, G. & Testa, A.M. (2004). Magnetic properties of nanocrystalline CoFe2O4 dispersed in amorphous silica. J Magn Magn Mater 272-276, 15611562.CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope, pp. 210216. New York: Plenum Press.CrossRefGoogle Scholar
Ennas, G., Casula, M.F., Falqui, A., Gatteschi, D., Marongiu, G., Piccaluga, G., Sangregorio, C. & Pinna, G. (2001). Nanocrystalline iron-cobalt alloys supported on a silica matrix prepared by the sol-gel method. J Non-Cryst Solids 293-295, 19.CrossRefGoogle Scholar
Falqui, A., Corrias, A., Gass, M. & Mountjoy, G. (2009). A transmission electron microscopy study of Fe-Co alloy nanoparticles in silica aerogel matrix using HREM, EDX and EELS. Microsc Microanal 15, 114124.CrossRefGoogle ScholarPubMed
Gich, M., Casas, Li., Roig, A., Molins, E., Sort, J., Suriñach, S., Baró, M.D., Muñoz, J.S., Morellon, L., Ibarra, M.R. & Nogués, J. (2003). High-coercivity ultralight transparent magnets. Appl Phys Lett 82, 43074309.CrossRefGoogle Scholar
Haefeli, U., Schuett, W., Teller, J. & Zborowski, M. (1997). Scientific and Clinical Applications of Magnetic Carriers. New York: Plenum Press.CrossRefGoogle Scholar
Husing, N. & Schubert, U. (1998). Aerogels airy materials: Chemistry, structure, and properties. Angew Chem, Int Ed 37, 2245.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Hutlova, A., Niznansky, D., Rehspringer, J.-L., Estournes, C. & Kurmoo, M. (2003). High coercive field for nanoparticles of CoFe2O4 in amorphous silica sol-gel. Adv Mater 15, 16221625.CrossRefGoogle Scholar
Kryder, M.H. (1996). Ultrahigh-density recording technologies. MRS Bull 21, 1722.CrossRefGoogle Scholar
Moreno, E.M., Zayat, M., Morales, M.P., Serna, C.J., Roig, A. & Levy, D. (2002). Preparation of narrow size distribution superparamagnetic gamma-Fe2O3 nanoparticles in a sol-gel transparent SiO2 matrix. Langmuir 18, 49724978.CrossRefGoogle Scholar
Pierre, A.C. & Pajonk, G.M. (2002). Chemistry of aerogels and their applications. Chem Rev 102, 42434265.CrossRefGoogle ScholarPubMed
Raj, K., Moskowitz, B. & Casciari, R. (1995). Advances in ferrofluid technology. J Magn Magn Mater 149, 174180.CrossRefGoogle Scholar
Wang, P., Bleloch, A.L., Falke, U. & Goodhew, P.J. (2006). Geometric aspects of lattice contrast visibility in nanocrystalline materials using HAADF STEM. Ultramicroscopy 106, 277283.CrossRefGoogle Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy, vol. 4, pp. 608611. New York: Plenum Press.CrossRefGoogle Scholar