Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T05:29:53.489Z Has data issue: false hasContentIssue false

The Ultrastructure of Skeletal Muscle Capillaries of Streptozotocin Diabetic Rats and the Therapeutic Effect of Benfluorex

Published online by Cambridge University Press:  07 October 2022

Nursel Gül*
Affiliation:
Faculty of Sciences, Biology Department, Ankara University, Tandogan, Ankara 06100, Turkey
Suna Cebesoy
Affiliation:
Faculty of Sciences, Biology Department, Ankara University, Tandogan, Ankara 06100, Turkey
Nesrin Özsoy
Affiliation:
Faculty of Sciences, Biology Department, Ankara University, Tandogan, Ankara 06100, Turkey
Hakan Eskizengin
Affiliation:
Faculty of Sciences, Biology Department, Ankara University, Tandogan, Ankara 06100, Turkey
Çiğdem Özer
Affiliation:
School of Medicine, Physiology Department, Gazi University, Besevler, Ankara 06500, Turkey
*
*Corresponding author: Nursel Gül, E-mail: ngul@science.ankara.edu.tr
Get access

Abstract

Diabetes mellitus is a serious disease worldwide and causes other associated diseases. In this study, we observed the effect of streptozotocin (STZ)-induced diabetes and benfluorex treatment on muscular capillary ultrastructure. Adult male rats were used as the test subjects and each individual was intraperitoneally injected with one dose of STZ (45 mg/kg) to induce diabetes. Doses (50 mg/kg) of benfluorex were given to the subjects with tap water by intragastric gavage application once daily for 21 days. At the end of day 21, muscle tissues were obtained from animals and examined under transmission electron microscopy. From the data obtained with the electron microscope, it was observed that the control group had typical continuous capillary vascular structures in their muscles, while STZ caused disruptive disorder of the muscle cells in the capillary wall of the STZ-diabetic group. Additionally, the thickening of the basement membrane around endothelial cells, loss of mitochondrial crista in the muscle cells, enlarged endothelial cells, and narrowed vessel lumen were observed in the muscle tissue. The findings of our study revealed that STZ-induced diabetes disrupted the vascular structure, while benfluorex partially improved it.

Type
Micrographia
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baluchnejadmojarad, T & Roghani, M (2008). Chronic administration of genistein improves aortic reactivity of streptozotocin-diabetic rats: Mode of action. Vasc Pharmacol 49, 15.CrossRefGoogle ScholarPubMed
Beltramo, E & Porta, M (2013). Pericyte loss in diabetic retinopathy: Mechanisms and consequences. Curr Med Chem 20(26), 32183225.CrossRefGoogle ScholarPubMed
Bloodworth, JMB & Molitor, DL (1965). Ultrastructural aspects of human and canine diabetic retinopathy. Investig Ophthalmol 4(6), 10371048.Google ScholarPubMed
Bouloumie, A, Bauersachs, J, Linz, W, Schölkens, BA, Wiemer, G, Fleming, I & Busse, R (1997). Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production. Hypertension 30, 934941.CrossRefGoogle ScholarPubMed
Brindley, DN (1993). Mechanisms for the effects of benfluorex on the obese-diabetic-dyslipidemic syndrome. Diabetes Metab Res 9(1), 5156.CrossRefGoogle ScholarPubMed
Carlson, EC, Audette, JL, Veitenheimer, NJ, Risan, JA, Laturnus, DI & Epstein, PN (2003). Ultrastructural morphometry of capillary basement membrane thickness in normal and transgenic diabetic mice. Anat Rec A Discov Mol Cell Evol Biol 271(2), 332341.CrossRefGoogle ScholarPubMed
Chung, ST, Chacko, SK, Sunehag, AL & Haymond, MW (2015). Measurements of gluconeogenesis and glycogenolysis: A methodological review. Diabetes 64(12), 39964010.CrossRefGoogle ScholarPubMed
Cosentino, F, Hishikawa, K, Katusic, ZS & Luscher, TF (1997). High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96, 2528.CrossRefGoogle ScholarPubMed
Cross, PC & Mercer, KY (1993). Cell and Tissue Ultrastructure: A Functional Perspective, 3rd ed. New York: WH Freeman and Company.Google Scholar
Damasceno, DC, Netto, AO, Lessi, IL, Gallego, FQ, Corvino, SB, Dallaqua, B, Sinzato, YK, Bueno, A, Calderon, IMP & Rudge, MVC (2014). Streptozotocin-induced diabetes models: Pathophysiological mechanisms and fetal outcomes. BioMed Res Int 2014, 819065.CrossRefGoogle ScholarPubMed
DeFronzo, RA & Ferrannini, E (1991). Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14(3), 173194.CrossRefGoogle ScholarPubMed
Drain, P (1998). Benfluorex (mediator): Non-insulin-dependent diabetes and hypertriglyceridemia. Journ Annu Diabetol Hotel Dieu, 339346.Google ScholarPubMed
Dulmovits, BM & Herman, IM (2012). Microvascular remodeling and wound healing: A role for pericytes. Int J Biochem Cell Biol 44(11), 18001812.CrossRefGoogle ScholarPubMed
Ejaz, S, Chekarova, I, Ejaz, A, Sohail, A & Lim, CW (2008). Importance of pericytes and mechanisms of pericyte loss during diabetic retinopathy. Diabetes Obes Metab 10(1), 5363.Google Scholar
Fiallo-Scharer, R & Eisenbarth, GS (2004). Patophysiology of insulin-dependent diabetes. In Pediatric Endocrinology, 1st ed., Pescovitz, OH & Eugster, EA (Eds.), pp. 411426. USA: Lippincott Williams and Wilkins.Google Scholar
Fischer, F & Gärtner, J (1983). Morphometric analysis of basal laminae in rats with long-term streptozotocin diabetes L. II. Retinal capillaries. Exp Eye Res 37(1), 5564.CrossRefGoogle ScholarPubMed
Frantzis, TG, Reeve, CM & Brown, AL (1971). The ultrastructure of capillary basement membranes in the attached gingiva of diabetic and non-diabetic patients with periodontal disease. J Periodontol 42(7), 406411.CrossRefGoogle Scholar
Gajdośík, A, Gajdośíková, A, Štefek, M, Navarová, J & Hozová, R (1999). Streptozotocin-induced experimental diabetes in male wistar rats. Gen Physiol Biophys 18(Focus Issue), 5462.Google ScholarPubMed
Gleissner, CA, Galkina, E, Nadler, JL & Ley, K (2007). Mechanisms by which diabetes increases cardiovascular disease. Drug Discov Today Dis Mech 4(3), 131140.CrossRefGoogle ScholarPubMed
Groop, LC, Bonadonna, RC, DelPrato, S, Ratheiser, K, Zyck, K, Ferrannini, E & DeFronzo, RA (1989). Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus: Evidence for multiple sites of insulin resistance. J Clin Invest 84(1), 205213.CrossRefGoogle ScholarPubMed
Hadler, MR & Buckle, AP (1992). Forty-five years of anticoagulant rodenticides – Past, present and future trends. In Proceedings of the Fifteenth Vertebrate Pest Conference, California, pp. 149–155.Google Scholar
Hayat, MA (1981). Principles and Techniques of Electron Microscopy, Biological Applications, 2nd ed. London: Edward Arnold Ltd.Google Scholar
Junqueira, LC, Carneiro, J & Kelley, RO (1998). Basic Histology, 9th ed. New York: McGraw-Hill.Google Scholar
Katakami, N (2018). Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J Atheroscler Thromb 25(1), 2739.CrossRefGoogle ScholarPubMed
Komolafe, O, Adeyemi, D, Adewole, S & Obuotor, E (2009). Streptozotocin-induced diabetes alters the serum lipid profiles of adult wistar rats. Int Cardiovasc Res J 7(1), 17.Google Scholar
Leutenegger, M, Bauduceau, B, Brun, JM, Guillon-Metz, F, Martin, C, Nicolino-Peltier, C, Richard, JL & Vannereau, D (1998). Added benfluorex in obese insulin-requiring type 2 diabetes. Diabetes Metab 24(1), 5561.Google ScholarPubMed
Listgarten, MA, Ricker, FH, Laster, L, Shapiro, J & Cohen, DW (1974). Vascular basement lamina thickness in the normal and inflamed gingiva of diabetics and non-diabetics. J Periodontol 45(9), 676684.CrossRefGoogle ScholarPubMed
McIntyre, M, Bohr, DF & Dominiczak, AF (1999). Endothelial function in hypertension. Hypertension 34, 539545.CrossRefGoogle ScholarPubMed
Mortensen, SP, Winding, KM, Iepsen, UW, Munch, GW, Marcussen, N, Hellsten, Y, Pedersen, BK & Baum, O (2019). The effect of two exercise modalities on skeletal muscle capillary ultrastructure in individuals with type 2 diabetes. Scand J Med Sci Sports 29, 360368.CrossRefGoogle ScholarPubMed
Naudi, A, Jove, M, Ayala, V, Cassanye, A, Serrano, J, Gonzalo, H, Boada, J, Prat, J, Portero-Otin, M & Pamplona, R (2012). Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res 2012, 696215.CrossRefGoogle ScholarPubMed
Nishikawa, T, Edelstein, D, Du, XL, Yamagishi, S, Matsumura, T, Kaneda, Y, Yorek, MA, Beebe, D, Oates, PJ, Hammes, HP, Giardino, I & Brownlee, M (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779), 787790.CrossRefGoogle ScholarPubMed
Paneni, F, Beckman, JA, Creager, MA & Cosentino, F (2013). Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Eur Heart J 34(31), 24362443.CrossRefGoogle ScholarPubMed
Pettepher, CC, LeDoux, SP, Bohr, VA & Wilson, GL (1991). Repair of alkali-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J Biol Chem 266(5), 31133117.CrossRefGoogle Scholar
Rafel Ribera, J, Casañas Muñoz, R, Anguera Ferrando, N, Batalla Sahún, N, Castro Cels, A & Pujadas Capmany, R (2003). Valvular heart disease associated with benfluorex. Rev Esp Cardiol 56(2), 215216.Google ScholarPubMed
Randall, D, Burggren, W & French, K (2000). Animal Physiology (Mechanisms and Adaptations), 4th ed. New York: W.H. Freeman and Company.Google Scholar
Sekikawa, A & LaPorte, RE (1997). Epidemiology of insulin dependent diabetes mellitus. In International Textbook of Diabetes Mellitus, 2nd ed., Alberti, KGMM, Zimmet, P, DeFronzo, RA & Keen, H (Eds.), pp. 8996. New York: John Wiley Sons Ltd.Google Scholar
Stahl, SS, Witkin, GJ & Scopp, IW (1962). Degenerative vascular changes observed in selected gingival specimens. Oral Surg Oral Med Oral Pathol Oral Radiol 15(12), 14951504.CrossRefGoogle ScholarPubMed
The American Diabetes Association (ADA) (2014). Standards of medical care in diabetes. Diabetes Care 37, 1480.CrossRefGoogle Scholar
Weill, A, Païta, M, Tuppin, P, Fagot, JP, Neumann, A, Simon, D, Ricordeau, P, Montastruc, JL & Allemand, H (2010). Benfluorex and valvular heart disease: A cohort study of a million people with diabetes mellitus. Pharmacoepidemiol Drug Saf 19(12), 12561262.CrossRefGoogle ScholarPubMed
Wild, SH, Roglic, G, Green, A, Sicree, R & King, H (2004). Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 27(10), 2569.CrossRefGoogle ScholarPubMed
Yönem, A (2011). Diabetes Mellitus Fizyoloji, Tanımlama, Sınıflama, Etiyopatogenez, Klinik Özellikler. Metabolizma ve Diyabet, pp. 543564. İstanbul: İstanbul Tıp Kitabevi.Google Scholar