Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T14:30:45.572Z Has data issue: false hasContentIssue false

Unmixing Mineral Phases, Improving Quantification: Use Machine Learning to Understand Deep-Mantle with STEM-EDS Data

Published online by Cambridge University Press:  22 July 2022

Hui Chen*
Affiliation:
Electron Spectrometry and Microscopy Laboratory (LSME), IPHYS, EPFL, Lausanne, Switzerland
James Badro
Affiliation:
Earth and Planetary Science Laboratory (EPSL), IPHYS, EPFL, Lausanne, Switzerland Institute de Physique du Globe de Paris, Sorbonne Paris Cité, Paris, France
Duncan T.L. Alexander
Affiliation:
Electron Spectrometry and Microscopy Laboratory (LSME), IPHYS, EPFL, Lausanne, Switzerland
Cécile Hébert
Affiliation:
Electron Spectrometry and Microscopy Laboratory (LSME), IPHYS, EPFL, Lausanne, Switzerland
*
*Corresponding author: hui.chen@epfl.ch

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Quantitative and Qualitative Mapping of Materials
Copyright
Copyright © Microscopy Society of America 2022

References

Jordan, MI and Mitchell, TM, Science, 349 (2015), p. 255. doi:10.1126/science.aaa8415CrossRefGoogle Scholar
Lee, DD and Seung, HS, Nature, 401 (1999), p. 788. doi:10.1038/44565CrossRefGoogle Scholar
Boykov, Y, Veksler, O and Zabih, R, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (2001), p. 1222. doi:10.1109/34.969114CrossRefGoogle Scholar
Heinz, DC and Chang, Chein-I, IEEE Transactions on Geoscience and Remote Sensing, 39 (2001), p. 529. doi:10.1109/36.911111CrossRefGoogle Scholar