Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T22:18:17.784Z Has data issue: false hasContentIssue false

Visualizing the Structural Progression of Clathrin Mediated Endocytosis with Fluorescence and Electron Microscopy

Published online by Cambridge University Press:  30 July 2020

Kem Sochacki
Affiliation:
National Institutes of Health, Bethesda, Maryland, United States
John Jimah
Affiliation:
National Institutes of Health, Bethesda, Maryland, United States
Jenny Hinshaw
Affiliation:
National Institutes of Health, Bethesda, Maryland, United States
Justin Taraska
Affiliation:
National Institutes of Health, Bethesda, Maryland, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
3D Structures: From Macromolecular Assemblies to Whole Cells (3DEM FIG)
Copyright
Copyright © Microscopy Society of America 2020

References

Sochacki, K.A. and Taraska, J.W., From Flat to Curved Clathrin: Controlling a Plastic Ratchet. Trends in cell biology, 2018.Google ScholarPubMed
Scott, B.L., Sochacki, K.A., Low-Nam, S.T., Bailey, E.M., Luu, Q., Hor, A., Dickey, A.M., Smith, S., Kerkvliet, J.G., and Taraska, J.W., Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics. Nature communications, 2018. 9(1): p. 419.10.1038/s41467-018-02818-8CrossRefGoogle ScholarPubMed
Bucher, D., Frey, F., Sochacki, K.A., Kummer, S., Bergeest, J.-P., Godinez, W.J., Kräusslich, H.-G., Rohr, K., Taraska, J.W., and Schwarz, U.S., Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis. Nature communications, 2018. 9(1): p. 1109.10.1038/s41467-018-03533-0CrossRefGoogle ScholarPubMed
Avinoam, O., Schorb, M., Beese, C.J., Briggs, J.A., and Kaksonen, M., ENDOCYTOSIS. Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science, 2015. 348(6241): p. 1369-72.10.1126/science.aaa9555CrossRefGoogle ScholarPubMed
Morris, K.L., Jones, J.R., Halebian, M., Wu, S., Baker, M., Armache, J.-P., Ibarra, A.A., Sessions, R.B., Cameron, A.D., and Cheng, Y., Cryo-EM of multiple cage architectures reveals a universal mode of clathrin self-assembly. Nature structural & molecular biology, 2019. 26(10): p. 890-898.Google Scholar
Sochacki, K.A., Shtengel, G., Van Engelenburg, S.B., Hess, H.F., and Taraska, J.W., Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nature methods, 2014. 11(3): p. 305.10.1038/nmeth.2816CrossRefGoogle ScholarPubMed
Sochacki, K.A. and Taraska, J.W., Correlative fluorescence super-resolution localization microscopy and platinum replica EM on unroofed cells, in Super-Resolution Microscopy. 2017, Springer. p. 219-230.10.1007/978-1-4939-7265-4_18CrossRefGoogle Scholar
Sochacki, K.A., Dickey, A.M., Strub, M.-P., and Taraska, J.W., Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nature cell biology, 2017. 19(4): p. 352.10.1038/ncb3498CrossRefGoogle Scholar