No CrossRef data available.
Published online by Cambridge University Press: 14 March 2018
Modern microelectronics have rapidly decreased in geometry to enhance the speed and processing power of computers. Advanced devices are approaching design rules of sub 0.13 micron in size, and the trend continues at the rate dictated by Moore's Law, Coupled with this reduction in device size, is a change in materials used for producing these devices. Traditional aluminum interconnect metallurgy and oxide dielectric materials are being replaced with copper and low-k materials in an effort to continue the trend of shrinking device sizes and higher processing capacities.
These changes in materials and device sizes have provided the impetus for alternative methods for producing cross sections. Although focused ion beam instrumentation has been successfully used for preparing cross sections, a combinatorial approach using polishing and argon ion milling has been found to dramatically enhance the ability to produce high quality cross sectional samples in a reasonably short amount of time.