No CrossRef data available.
Published online by Cambridge University Press: 14 March 2018
Since becoming popular more than a decade ago, low vacuum scanning electron microscopes (SEM) have continued to evolve. The latest systems offer uncompromised performance over an unprecedented range of sample chamber vacuum conditions. Instruments are now available that provide near-nanometer resolution in all vacuum modes and the ability to operate at pressures as high as 4000 Pascals (~30 Torr). Low vacuum operation eliminates much of the sample preparation required for conventional (high vacuum) SEM. Insulating samples can be imaged without conductive coatings. Wet, dirty, outgassing samples can be examined without drying and fixing. Systems can also be configured with a wide range of ancillary capabilities for imaging, analysis, and sample manipulation, including advanced secondary, backscattered, and transmitted electron detection, X-ray spectrometry, electron backscatter diffraction, and focused ion beam (FIB) manipulation. The current generation of systems combine speed, flexibility, repeatability, and ease of use, making them the ideal solution for any laboratory that must satisfy a wide range of imaging and analytical demands.