Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T05:01:27.686Z Has data issue: false hasContentIssue false

Programmable Array Microscopes

Published online by Cambridge University Press:  14 March 2018

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The programmable array microscope (PAM) is a powerful tool combining the capabilities of nearly all previously described optical sectioning techniques in a single microscope. Not only can the user create optical sections of threedimensional objects, but the PAM's unique adaptive optical strategy allows a user to select the best sectioning method for a particular sample or experimental need. The key to the PAM is a spatial light modulator (SLM). This device, when placed in the image plane of a microscope, can be used to create optical sectioning, generate spatial encoding masks, and/or define regions of interest. The growing family of PAMs includes optical sectioning systems operating in fluorescence4'3'7112 and reflection7'112, as well as spectroscopic imaging systems for fluorescence emission spectroscopy. Perhaps the most common application of this unique family of adaptive optical systems is optical sectioning.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2000

References

1). Cha, S. D., Lin, P. C., et al. (2000). “Nontranslational three­dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning.” Applied Optics 39(16): 2605-2613.CrossRefGoogle Scholar
2). Hanley, Q.S., Verveer, P.J., et al. (2000). “Three-dimensional spectral imaging by Hadamard transform spectroscopy in a programmable array microscope.” Journal of Microscopy­Oxford 197: 514.Google Scholar
3). Hanley, Q. S., Verveer, P. J., et al. (1999). “An optical sec­tioning programmable array microscope implemented with a digital micromirror device.” Journal of Microscopy-Oxford 196: 317331.Google Scholar
4). Hanley, Q. S., Verveer, P. J. , et al. (1998). “Optical section­ ing fluorescence spectroscopy in a programmable array micro­scope.” Applied Spectroscopy 52(6): 783789.Google Scholar
5). Hanley, Q. S., Verveer, P. J., et al. (1999). “Spectral imaging in a programmable array microscope by Hadamard transform fluorescence spectroscopy .” Applied Spectroscopy 53(1): 110.Google Scholar
6). Juskaitis, R., Wilson, T., et al. (1996). “Efficient real-time confocal microscopy with while light sources.” Nature 383: 804806.Google Scholar
7). Liang, M., Stehr, R. L., et al. (1997). “Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination.” Optics Letters 22(11): 751753.Google Scholar
8). Malik, Z., Buckwald, R. A., et al. (1996). “Fourier transform mul­ tipixel spectroscopy for quantitative cytology.” Journal of Microscopy 182: 133140.Google Scholar
9). Morris, H. R., Hoyt, C. C., et al. (1994). “Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid crystal tunable filters.” Applied Spectroscopy 48(7): 857865.Google Scholar
10). Puppels, G. J., F. F. M. de Mui, et al. (1990). “Studying single living cells and chromosomes by confocal Raman microspectro­scopy.” Nature 347(6290): 301303.Google Scholar
11). Schaeberle, M. O., Morris, H. R., et al. (1999). “Raman chemical imaging microscopy.” Analytical Chemistry 5: 175A181A.Google Scholar
12). Smith, P. J., Taylor, C. M., et al. (2000). “Programmable array microscopy with a ferroelectric liquid-crystal spatial light modula­ tor.” Applied Optics 39(16): 26642669.Google Scholar
13). Timlin, J. A., Carden, A., et al. (1999). “Spatial distribution of phosphate species in mature and newly generated mammalian bone by hyperspectral Raman imaging.” Journal of Biomedical Optics 4: 2834.Google Scholar
14). Turner, J. F. and Treado, P. J. (1996). “Near infrared acousto­ oplic tunable filter Hadamard transform spectroscopy.” Applied Spectroscopy 50(2): 277284.Google Scholar
15). Verveer, P. J., Hanley, Q. S., et al. (1998). “Theory of confocal fluorescence imaging in the programmable array microscope (PAM).” Journal of Microscopy-Oxford 189: 192198.Google Scholar
16). Wilson, T., Juskaitis, R., et al. (1996). “Confocal microscopy by aperture correlation.” Optics Letters 21(23): 1879-1881.Google Scholar
17). Youvan, O. C. (1994). “Imaging sequence space.” Nature 369: 79.Google Scholar