Published online by Cambridge University Press: 26 June 2009
The nucleolus represents a highly dynamic nuclear domain arising from an equilibrium between the level of ribosomal RNA synthesis and the efficiency of ribosomal RNA processing [1, 2]. Although the nucleolus is primarily associated with ribosome biogenesis, several lines of evidence now demonstrate that it has additional functions, such as regulation of mitosis, cell-cycle progression and proliferation, many forms of stress response, and biogenesis of multiple ribonucleoprotein particles. Ribosome biogenesis is regulated throughout interphase and ceases during mitosis (Figure 1). Thus, there is a direct relationship between cell growth and nucleolar activities. Nucleoli are well known to be dramatically modified in cancer cells. Additionally, a large number of key proteins from both DNA- and RNA-containing viruses are localized in the nucleolus, including the human immunodeficiency virus (HIV)-1 Rev and Tat proteins. Targeting of viral proteins to the nucleolus not only facilitates virus replication, but may also be required for pathogenic processes. The nucleolus can also be considered a sensor of stress due to the redistribution of the ribosomal proteins in the nucleoplasm through its disruption.