Published online by Cambridge University Press: 14 March 2018
Many attempts have been made to discover the causes of the various colours displayed by minerals. If we except fluorescence and allied phenomena, the diiteren~ theories advanced may in general be grouped under one or other of the following classes:
(1) Colour may be due to an intrinsic property of atoms, ions, or molecules. Examples are copper atoms, chromate ions, and ferric oxide molecules.
(2) Colour is sometimes attributed to structural causes. The blue tints of certain halites have been explained in this way; but a fresh suggestion is made in this communication.
(3) A pigmentary impurity may cause the observed colour. The colour of the ruby is believed to be caused by the presence of a red chromic oxide. The blue tint of a Yorkshire aragonite is shown later to be due to a copper salt.
(4) Some minerals show plays of colours due to interference and/or grating effects. Labradorite and opal are cases in point. Into this group also fall minerals like bomite which become iridescent from tarnish.
page 584 note 1 Stillwell, C. W., Journ. Physical Chem., 1926, vol. 30, p. 1441 ; also vide infra.CrossRefGoogle Scholar
page 585 note 1 Friend, J. N. and Allchin, J. P., Nature, London, 1939, vol. 144, p. 633. [M.A. 7–527.]Google Scholar
page 585 note 2 Brammall, A. and Dowie, D. L., Min. Mag., 1936, vol. 24, p. 260.CrossRefGoogle Scholar
page 585 note 3 Bruce, E. L., Trans. Roy. Soc. Canada, 1934, ser. 3, vol. 28, sect. 4, p. 7. [M.A. 6–264.] In the paper numerous references are quoted to coloured quartz.Google Scholar
page 586 note 1 Vanino, L. and Rössler, L., Zeits. Chem. Ind. Kolloide, 1910, vol. 6, p. 289.Google Scholar
page 586 note 2 Long, S. H., Proc. Univ. Durham Phil. Sot., 1913, vol. 5, p. 113.Google Scholar
page 586 note 3 Struck, L. W., Spectrum analysis, 1936. [M.A. 6–291.]Google Scholar
page 587 note 1 Using Pozzi, M. E. Escot's method of reduction, Ann. Chim. Anal., 1907, vol. 12, p. 90.Google Scholar
page 587 note 2 This method is based on that recommended for testing urine in the ‘B.D.H. Book of reagents for delicate analysis’, 7th edit., 1939, p. 64. The solution of hydroquinone we used contained 0·0335 g. per litre, 1 c.c.≡0.04 mg. gold. (From Pollard, W. B., Analyst, 1937, vol. 62, p. 597.CrossRefGoogle Scholar)
page 588 note 1 The details of this method were worked out by Mr. E. A. Hardy, to whom we take this opportunity of expressing our indebtedness.
page 588 note 2 See B.D.H. Book of reagents, p. 103.
page 588 note 3 Williams, P. E. and Briscoe, H. T., Chem. News, 1932, vol 145, p. 177.Google Scholar
page 589 note 1 Dana, , System of mineralogy, 6th edit., 1892, p. 906 Google Scholar; Miers, H. A., Mineralogy, 1902, p. 524.Google Scholar
page 589 note 2 Doelter, C., Die Farben der Mineralien. Braunschweig, 1915. [M.A. 1–227.]Google Scholar
page 590 note 1 Gordon, W. T., Nature, London, 1922, vol. 109, p. 583 Google Scholar; Russell, A., Min. Mag., 1929, vol. 22, p. 159.CrossRefGoogle Scholar
page 590 note 2 See, for example, Goubeau, J. and Birckenbach, L., Zeits. Anorg. Chem., 1938, vol 236, p. 37.CrossRefGoogle Scholar
page 591 note 1 Dana, , System of mineralogy, 6th edit., 1892, p. 283.Google Scholar
page 591 note 2 Gaudin, M. A., Compt. Rend. Acad. Sci. Paris, 1837, vol. 4, p. 999.Google Scholar
page 591 note 3 Vogel, P., Neues Jahrb. Min., Abt. A,. 1934, Beil.-Bd. 68, p. 401. [M.A. 7–129.]Google Scholar
page 591 note 4 O'Leary, W. J., Royer, G. L., and Papish, J., Science, New York, 1934, vol. 80, p. 412.Google Scholar
page 592 note 1 Kinoshita, K., Journ. Geol. Soc. Tokyo, 1925, vol. 32, p. 9. [M.A. 3–118.]CrossRefGoogle Scholar
page 592 note 2 Przibram, K., Nature, London, 1936, vol. 137, p. 107.Google Scholar
page 592 note 3 Siedentopf, H., Physikal. Zeits., 1905, vol. 6, p. 855 Google Scholar, Also Zsigmondy, R., Zur Erkenntnis der Kolloide, 1905, p. 58.Google Scholar
page 592 note 4 Cornu, F., Neues Jahrb. Min., 1908, vol. 2, p. 22.Google Scholar Also Svedberg, T., Colloid chemistry, 1924, p. 67.Google Scholar
page 592 note 5 Spezia, G., Centralbl. Min., 1909, p. 398.Google Scholar
page 592 note 6 Phipps, T. E. and Brode, W. R., Journ. Physical Chem., 1926, vol. 30, p. 507.CrossRefGoogle Scholar
page 592 note 7 Doelter, C., Monatsh. Chem., 1929, vol. 52, p. 241. [M.A. 4–252.] References are given to his earlier work.CrossRefGoogle Scholar
page 593 note 1 Kennard, T. G., Howell, D. H., and Yaeckel, M. P., Amer. Min., 1937, vol. 22, p. 65. [M.A. 6–503.]Google Scholar
page 593 note 2 Particularly Przibram, K., Sitzungsber. Akad. Wiss. Wien, Abt. II A , 1934, vol. 143, p. 489 Google Scholar; 1924, vol. 132, p. 262; &c. [M.A. 3–116, 6–263.] Guthrie, F. C., Nature, London, 1929, vol. 123, p. 130 Google Scholar; Phipps and Brode, loc. cir.
page 593 note 3 Caldwell, W. E., Ind. Eng. Chem. Anal., 1937, vol. 9, p. 530. [M.A. 7–435.]CrossRefGoogle Scholar
page 593 note 4 Przibram, K., British Chemical Abstracts, 1938, p. 482 Google Scholar; from Kali, 1936, vol. 30, p. 61. [M.A. 7–526.]
page 593 note 5 Friend, J. N. and Allchin, J. P., Nature, London, 1940, vol. 145, p. 266. [M.A. 7–527.]Google Scholar