Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T22:57:09.669Z Has data issue: false hasContentIssue false

The crystal structure of kalsilite, KAlSiO4

Published online by Cambridge University Press:  14 March 2018

A. J. Perrotta
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, U.S.A.
J. V. Smith
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, U.S.A.

Summary

A full-matrix, three-dimensional refinement of kalsilite, KAlSi04 (hexagonal, a 5·16, c 8.69 Å, P6a), shows that the silicon and aluminium atoms are ordered. The respective tetrahedral distances of 1·61 and 1·74 Å agree with values of 1·61 and 1·75 Å taken to be typical of framework structures. As in nepheline, an oxygen atom is statistically distributed over three sites displaced 0·25 Å from the ideal position on a triad axis. This decreases the bond angle from 180° to 163° in conformity with observations on some other crystal structures. The potassiumoxygen distances of 2·77, 2·93, and 2·99 Å are consistent with the wide range normally found for this weakly bonded atom.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berghuis, (J.), Haanappel, (I. J. M.), Potters, (M.), Loopstra, (B. O.), Macgillavry, (C. H.), and Veenendaal, (A. L.), 1955. Acta Cryst., vol. 8, p. 478.CrossRefGoogle Scholar
Claringbull, (G. F.) and Bannister, (F. A.), 1948. Acta Cryst., vol. 1, p. 42.CrossRefGoogle Scholar
Cruickshank, (D. W. J.), Lynton, (H.), and Barclay, (G. A.), 1962. Ibid., vol. 15, p. 491.Google Scholar
Hahn, (T.) and Buerger, (M. J.), 1955. Zeits. Krist., vol. 106, p. 308.Google Scholar
Hoppe, (R.) and Schepers, (B.), 1960. Naturwiss., vol. 47, p. 376.Google Scholar
Kamb, (W. B.), 1960. Acta Cryst., vol. 13, p. 15 [M.A. 15-98].CrossRefGoogle Scholar
Liebau, (F.), 1961. Ibid., vol. 14, p. 1103.Google Scholar
Mcconnell, (J. D. C.), 1962. Min. Mag., vol. 33, p. 114.Google Scholar
Mckie, (D.) and Mcconnell, (J. D. C.), 1963. Ibid., p. 581.Google Scholar
Nieuwenkamp, (W.), 1937. Zeits. Krist., vol. 96, p. 454.Google Scholar
Nowacki, (W.), 1942. Naturwiss., vol. 30, p. 471.CrossRefGoogle Scholar
Sahama, (Th. G.), 1958. Amer. Min., vol. 43, p. 165 [M.A. 14-206].Google Scholar
Sahama, (Th. G.), 1960. Journ. Petrology, vol. 1, p. 146.Google Scholar
Sahama, (Th. G.), 1962. Ibid., vol. 3, p. 65.Google Scholar
Sahama, (Th. G.), Neuvonen, (K. J.), and HYTONEN (KAI), 1956. Min. Mag., vol. 31, p. 200.Google Scholar
Smith, (J. V.) and Bailey, (S. W.), 1963. Acta Cryst., vol. 16, p. 801.CrossRefGoogle Scholar
Smith, (J. V.) and SAHAMA (Th. G.), 1957. Amer. Min., vol. 42, p. 287 [M.A. 14-21].Google Scholar
Smith, (J. V.) and Tvttle, (O. F.), 1957. Amer. Journ. Sei., vol. 255, p. 282.Google Scholar
Tuttle, (O. F.) and Smith, (J. K.), 1958. Amer. Journ. Sci., vol. 256, p. 571, [M.A. 14-333].CrossRefGoogle Scholar
Wallmark, (S.) and Westoren, (A.), 1937. Arkiv Kemi Min. Geol., vol. 12B, no. 35.Google Scholar
Zoltai, (T.) and Buerger, (M. J.), 1959. Zeits. Krist., vol. 111, p. 129.Google Scholar