Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T01:27:46.435Z Has data issue: false hasContentIssue false

The significance of the gabbroic xenoliths from Gough Island, South Atlantic

Published online by Cambridge University Press:  14 March 2018

R. W. Le Maitre*
Affiliation:
Department of Mineralogy, British Museum (Natural History), Cromwell Road, London, S.W. 7

Summary

The petrography and mineralogy of a series of gabbroic xenoliths, consisting essentially of varying proportions of olivine, clinopyroxene, orthopyroxene, and plagioclase, are described from Gough Island. These are compared with xenoliths from other oceanic localities. Four new analyses of xenoliths and six of pyroxenes are presented, together with some partial analyses of plagioclases. It is concluded that the xenoliths are derived from the mantle above the magma source area. The composition of the mantle in this region is thought to be that of an olivine-tholeiite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, (P.E.), Gass, (I.G.), Harris, (P.G.), and LE Maitre, (R.W.), 1964. Vulcanological report of the Royal Society Expedition to Tristan da China, 1962.Phil. Trans. Roy. Soc. (A), vol. 256, p. 439.Google Scholar
Bown, (M.G.) and Gay, (P.), 1959. Amer. Min., vol. 44, p. 592.Google Scholar
Daly, (R.A.), 1925. Proc. Amer. Acad. Arts Sci., vol. 60, no. 1.Google Scholar
Dunne, (J.C.), 1941. Results of Norwegian Sci. Exp. to Tristan da Cunha, 1937-38, No. 2. Bet norske videnskaps-akad. Oslo.Google Scholar
Eaton, (J.P.) and Murata, (K.J.), 1960. Science, vol. 132, p. 925.Google Scholar
Edwards, (A.B.), 1938. B.A.N.Z. Antarc. Research Exp. 192931. Reports Series A, vol. 2, part 5, p. 72.Google Scholar
Gay, (P.) and L E Maitre, (R.W.), 1961. Amer. Min. vol. 46, p. 92.Google Scholar
Gorskov, (G.S.), 1956. C.R. Aead. Sci. U.R.S.S., vol. 106, no. 4, p. 703.Google Scholar
Henry, (N.F.M.), 1942. Min. Mag., vol. 26, p. 179.Google Scholar
Kushiro, (I.), 1960. Amer. Journ. Sci., vol. 258, p. 548.Google Scholar
Le Bas, (M.J.), 1962. Ibid., vol. 260, p. 267.Google Scholar
Le Maitre, (R.W.), 1962. Bull. Geol. Soc. Amer., vol. 73, p. 1309.Google Scholar
Macdonald, (G.A.), 1949. Ibid., vol. 60, p. 1541.Google Scholar
Powers, (H.A.), 1955. Geochim. et Cosmoschim. Acta, vol. 7, p. 77.Google Scholar
Segnit, (E.R.), 1953. Min. Mag., vol. 30, p. 218.Google Scholar
Smith, (J.V.) and Gay, (P.), 1958. Ibid., vol. 31, p. 744.Google Scholar
Talbot, (J.L.), Hobbs, (B.E.), Wilshire, (H.G.), and Sweatman, (T.R.), 1963. Amer. Min., vol. 48, p. 150.Google Scholar
Vermaas, (F. H. S.) and Schmidt, (E.R.), 1959. Beit. zur Min. und Pert., Bd. 6, p. 219.Google Scholar
Wilshire, (H.G.) and Binns, (R.A.), 1961. Journ. Petrology, vol. 2, p. 185.Google Scholar
Yoder, (H.S.) and Tilley, (C.E.), 1962. Ibid., vol. 3, p. 342.Google Scholar