Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T21:57:13.323Z Has data issue: false hasContentIssue false

Crystal chemical formula for sartorite homologues

Published online by Cambridge University Press:  02 January 2018

Emil Makovicky*
Affiliation:
Institute for Geoscience and Mineral Resources Management, University of Copenhagen, Østervoldgade 10, DK-1350, Copenhagen K, Denmark
Dan Topa
Affiliation:
Natural History Museum-Wien, Burgring 7, 1010 Vienna, Austria
*
* E-mail: emilm@geo.ku.dk

Abstract

The members of the sartorite homologous series are complex sulfides Me2+8N–16–2XMe3+16+XMe+XS8N+8 where Me2+ is Pb and Me3+ is As and Sb, whereas Me+ is Ag and/or Tl. This paper presents calculation formulae for the homologue order N and for the separate substitution percentages for Tl + (As,Sb) ↔ 2Pb and Ag + (As,Sb) ↔ 2Pb substitutions. This enables one to evaluate the crystal chemistry and build a systematic classification of the sartorite homologues.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlepsch, P., Makovicky, E. and Balić-Žunić, T. (2001) Crystal chemistry of sartorite homologues and related sulfosalts. Neues Jahrbuch für Mineralogie, Abhandlungen 176, 45-66.CrossRefGoogle Scholar
Berlepsch, P., Armbruster, T. and Topa, D. (2002) Structural and chemical variations in rathite, Pb8Pb4–x(Tl2As2)x(Ag2As2)As16S40: modulations of a parent structure. Zeitschrift für Kristallographie 217, 1-10.Google Scholar
Berlepsch, P., Armbruster, T., Makovicky, E. and Topa, D. (2003) Another step toward understanding the true nature of sartorite: determination and refinement of a nine-fold superstructure. American Mineralogist 88, 450-461.CrossRefGoogle Scholar
Bindi, L., Nestola, F., Makovicky, E., Guastoni, A. and de Battisti, L. (2014) Tl-bearing sulphosalts from the Lengenbach quarry, Binn valley, Switzerland: philrothite, TlAs3S5. Mineralogical Magazine 78, 1-9.CrossRefGoogle Scholar
Bracci, G., Dalena, D., Orlandi, P., Duchi, G. and Vezzalini, G. (1980) Guettardite from Tuscany, Italy: a second occurrence. The Canadian Mineralogist 18, 13-15.Google Scholar
Ciobanu, C.L., Cook, N.J., Capraru, N., Damina, G. and Cristea, P. (2005) Mineral assemblages from the vein Salband at Sa˘ca˘ rimb, Golden Quadrilateral, Romania: I . Sulphides and sulphosalts. Au–Ag–Te–Se deposits. IGCP Project 486. Bulgarian Academy of Sciences. Geochemistry, Mineralogy and Petrology (Sofia) 43, 47-55.Google Scholar
Engel, P. and Nowacki, W. (1969) Kristallstruktur von Baumhauerit. Zeitschrift für Kristallographie 129, 178-202.CrossRefGoogle Scholar
Engel, P. and Nowacki, W. (1970) Die Kristallstruktur von Rathit-II (As25S56Pb65 viiPb12 ix ). Zeitschrift für Kristallographie 131, 356-375.CrossRefGoogle Scholar
Engel, P., Gostojic, M. and Nowacki, W. (1983) The crystal structure of pierrotite, Tl2(Sb,As)10S16. Zeitschrift für Kristallographie 165, 209-215.CrossRefGoogle Scholar
Iitaka, Y. and Nowacki, W. (1961) A refinement of the pseudo crystal structure of scleroclase PbAs2S4 . Acta Crystallographica 14, 1291-1292.CrossRefGoogle Scholar
Jambor, J.L. (1967a) New lead sulfantimonides from Madoc, Ontario – Part 1. The Canadian Mineralogist 9, 7-24.Google Scholar
Jambor, J.L. (1967b) New lead sulfantimonides from Madoc, Ontario. Part 2 – Mineral descriptions. The Canadian Mineralogist 9, 191-213.Google Scholar
Johan, Z. and Mantienne, J. (2000) Thallium-rich mineralization at Jas Roux, Hautes-Alpes, France: a complex epithermal, sediment-hosted, ore-forming system. Journal of the Czech Geological Society 45, 63-77.Google Scholar
Khodaparast, M., Tajedin, H. and Shahrokhi, V. (2010) Nature of fluid inclusions of gold mineralization at Barika shear zone: example of Kuroko type gold mineralization in the west of Iran. Abstracts, 1st International Applied Geological Congress, Islamic Azad University – Mashad Branch, Iran, 26-28. April 2010.Google Scholar
Laroussi, A., Moëlo, Y. and Ohnenstetter, D. (1989) Silver and thallium in sulfosalts of the sartorite series (Lengenbach, Binn Valley, Switzerland). Comptes Rendus de l’Académie des Sciences, Série II 308, 927-933.Google Scholar
Le Bihan, M.T. (1962) é tude structurale de quelques sulfures de plomb et d’arsenic naturels du gisement de Binn. Bulletin de la Société Francaise de Minéralogie et de Cristallographie 99, 351-360.Google Scholar
Makovicky, E. (1985) The building principles and classification of sulphosalts based on the SnS archetype. Fortschritte der Mineralogie 63, 45-89.Google Scholar
Makovicky, E. (1997) Modular and crystal chemistry of sulfosalts and other complex sulfides. Pp. 315-344. in: Modular aspects of minerals (S. Merlino, editor). EMU Notes in Mineralogy, 1.Google Scholar
Mantienne, J. (1974) La minéralisation metallifère de Jas-Roux (Hautes-Alpes). Thèse de Doctorat Universitaire, Université de Paris 6, Paris.Google Scholar
Marumo, F. and Nowacki, W. (1965) The crystal structure of rathite- I.Zeitschriftfür Kristallographie 122, 433-456.Google Scholar
Marumo, F. and Nowacki, W. (1967) The crystal structure of dufrenoysite, Pb16As16S40 . Zeitschrift für Kristallographie 124, 409-419.CrossRefGoogle Scholar
Orlandi, P., Biagioni, C., Bonaccorsi, E., Moëlo, Y. and Paar, W.H. (2012) Lead-antimony sulfosalts from Tuscany (Italy). XII. Boscardinite , TlPb3(Sb7As2)S9S18, a new mineral species from the Monte Arsiccio mine: occurrence and crystal structure. The Canadian Mineralogist 50, 235-251.CrossRefGoogle Scholar
Ozawa, T. and Nowacki, W. (1974) Note on the mineral rathite-IV. Neues Jahrbuch für Mineralogie, Monatshefte, 530-531.Google Scholar
Paar, W.H., Pring, A., Moëlo, Y., Stanley, C.J., Putz, H., Topa, D., Roberts, A.C. and Braithwaite, R.S.W. (2009) Daliranite, PbHgAs2S6, a new sulfosats from the Zarshouran Au-As deposit, Takab region, Iran. Mineralogical Magazine 73, 871-881.CrossRefGoogle Scholar
Ribar, B., Nicca, C. and Nowacki, W. (1969) Dreidimensionale Verfeinerung der Kristallstruktur von Dufrenoysit, Pb8As8S20 . Zeitschrift für Kristallographie 130, 15-40.CrossRefGoogle Scholar
Topa, D., Makovicky, E., Tajedin, H., Putz, H. and Zagler, G. (2013) Barikaite , Ag3Pb1 0 (Sb8As11)S19S40, a new member of the sartorite homologous series. Mineralogical Magazine 77, 3039-3046.CrossRefGoogle Scholar