Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T11:19:24.029Z Has data issue: false hasContentIssue false

Crystallographic and spectroscopic characterization of a natural Zn-rich spinel approaching the endmember gahnite (ZnAl2O4) composition

Published online by Cambridge University Press:  05 July 2018

V. D’Ippolito*
Affiliation:
Dipartimento di Scienze della Terra, Sapienza Università di Roma, Italy
G. B. Andreozzi
Affiliation:
Dipartimento di Scienze della Terra, Sapienza Università di Roma, Italy
F. Bosi
Affiliation:
Dipartimento di Scienze della Terra, Sapienza Università di Roma, Italy
U. Hålenius
Affiliation:
Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
L. Mantovani
Affiliation:
Dipartimento di Fisica e Scienze della Terra “Macedonio Melloni”, Università di Parma, Italy
D. Bersani
Affiliation:
Dipartimento di Fisica e Scienze della Terra “Macedonio Melloni”, Università di Parma, Italy
R. A. Fregola
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, Italy

Abstract

The crystal chemistry of a natural, gem-quality, blue-grey Zn-rich spinel crystal from Jemaa, Kaduna State, Nigeria, was studied using electron microprobe, single-crystal X-ray diffraction, optical absorption and Raman spectroscopies. The composition of the crystal approaches the gahnite endmember (ZnAl2O4), ∼94 mol.%, with the remainder being dominated by a hercynite component (FeAl2O4). The unit-cell dimension is 8.0850(3) Å and the tetrahedral and octahedral bond distances are determined as T–O 1.9485(6) Å and M–O 1.9137(3) Å. Crystal chemical analysis resulted in the empirical structural formula T(Zn0.94Fe2+0.03Al0.03)M (Al1.96Fe2+0.03Fe3+0.01)O4, which shows Zn and Al almost fully ordered in the tetrahedrally and octahedrally coordinated T and M sites, respectively. Raman spectra obtained using the excitation of the blue 473.1 nm line of a Nd:YAG laser display three of the five Raman-active modes predicted for the general oxide spinel group of minerals. These are the Eg mode at 420.6 cm–1 and the T2g modes at 510 cm–1 and 661 cm–1, due to vibrations in the AlO6 octahedra. Optical absorption spectra recorded in the UV/VIS-NIR-MIR range 2000 29000 cm–1 show a dominant absorption band at ∼5000 cm–1 which is caused by spin-allowed electronic dd transitions in Fe2+ located at the T sites. The blue-grey hue exhibited by the sample is mainly due to spin-forbidden electronic transitions in TFe2+ and to MFe2+MFe3+ intervalence charge transfer, and the poor saturation of the colour is due to the small concentration of Fe2+ and Fe3+.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreozzi, G.B., Princivalle, F., Skogby, H., and Della Giusta, A., (2000) Cation ordering and structural variations with temperature in MgAl2O4 spinel: an X-ray single crystal study. American Mineralogist, 85, 11641171. Erratum (2001), 86, 204.CrossRefGoogle Scholar
Andreozzi, G.B., Bosi, F., and Garramone, F., (2001a) Synthetic spinels in the (Mg,Fe2+,Zn)(Al,Fe3+)2O4 system. II. Preliminary chemical and structural data of hercynite and magnesioferrite samples. Periodico di Mineralogia, 70, 193204.Google Scholar
Andreozzi, G.B., Lucchesi, S., Skogby, H., and Della Giusta, A., (2001b). Composition dependence of cation distribution in some synthetic (Mg,Zn)(Al,Fe3+)2O4 spinels. European Journal of Mineralogy, 13, 391402.CrossRefGoogle Scholar
Andreozzi, G.B. and Lucchesi, S., (2002) Intersite distribution of Fe2+ and Mg in the spinel (sensu stricto)-hercynite series by single-crystal X-ray diffraction. American Mineralogist, 87, 11131120.CrossRefGoogle Scholar
Appel, P.W.U. (2000). Gahnite in the ~3.75 Ga Isua Greenstone Belt, West Greenland. Mineralogical Magazine, 64, 121124.CrossRefGoogle Scholar
Ardit, M., Cruciani, G., and Dondi, M., (2012) Structural relaxation in tetrahedrally coordinated Co2+ along the gahnite-Co-aluminate spinel solid solution. American Mineralogist, 97, 13941401.CrossRefGoogle Scholar
Batchelor, R.A. and Kinnaird, J.A. (1984) Gahnite compositions compared. Mineralogical Magazine, 48, 425429.CrossRefGoogle Scholar
Bosi, F., Hålenius, U. and Skogby, H., (2010) Crystal chemistry of the MgAl2O4–MgMn2O4–MnMn2O4 system: Analysis of structural distortion in spineland hausmannite-type structures. American Mineralogist, 95, 602607.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Hålenius, U. and Skogby, H., (2011) Zn-O tetrahedral bond length variations in normal spinel oxides. American Mineralogist, 96, 594598.CrossRefGoogle Scholar
Bosi, F., Halenius, U., D’Ippolito, V. and Andreozzi, G.B. (2012) Blue spinel crystals in the MgAl2O4- CoAl2O4 series: II. Cation ordering over short range and long range scales. American Mineralogist, 97, 18341840.CrossRefGoogle Scholar
Chopelas, A. and Hofmeister, A., (1991) Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar. Physics and Chemistry of Minerals, 18, 279293.CrossRefGoogle Scholar
Cooley, R.F. and Reed, J.S. (1972) Equilibrium Cation Distribution in NiAl2O4, CuAl2O4 and ZnAl2O4 Spinels. Journal of The American Ceramic Society, 55, 395398.CrossRefGoogle Scholar
Cynn, H., Sharma, S.K., Cooney, T.F. and Nicol, M., (1992) High-temperature Raman investigation of order-disorder behavior in the MgAl2O4 spinel. Physical Review B, 45, 500502.CrossRefGoogle ScholarPubMed
Fang, C.M., Loong, C.K., de Wijs, G.A. and de With, G., (2002) Phonon spectrum of ZnAl2O4 spinel from inelastic neutron scattering and first-principles calculations. Physical Review B, 66, 144301.CrossRefGoogle Scholar
Feenstra, A., Waldockenga, E., Hede, D., and Wiedenbeck, M., (2003) Li-rich zincostaurolite and its decompression related breakdown products in a diaspore- bearing metabauxite from East Samos (Greece): An EMP and SIMS study. American Mineralogist, 88, 789805.CrossRefGoogle Scholar
Frondel, C. and Baum, J.L. (1974) Structure and mineralogy of the Franklin zinc-iron-manganese deposit, New Jersey. Economic Geology, 69, 157180.CrossRefGoogle Scholar
Frost, B.R. (1973) Ferroan gahnite from quartz-biotitealmandine schist, Wind River Mountains, Wyoming. American Mineralogist, 58, 831834.Google Scholar
Gandhi, S.M. (1971) On the ferroan gahnite of Mamandur, Madras State, India. Mineralogical Magazine, 38, 528529.CrossRefGoogle Scholar
Gaudon, M., Apheceixborde, A., Ménétrier, M., Le Nestour, A., and Demourgues, A., (2009) Synthesis temperature effect on the structural features and optical absorption of Zn1-xCoxAl2O4 oxides. Inorganic chemistry, 48, 90859091.CrossRefGoogle ScholarPubMed
Ghosh, B. and Praveen, M.N. (2007) Garnet-gahnitestaurolite relations and occurrence of ecandrewsite from the Koparpani base metal sulphide prospect, Betul Belt, Central India. Neues Jahrbuch für Mineralogie, 184/1, 105111.CrossRefGoogle Scholar
Hålenius, U., Skogby, H., and Andreozzi, G.B. (2002) Influence of cation distribution on the optical absorption spectra of Fe3+–bearing spinel s.s.- hercynite crystals: evidence for electronic transitions in VIFe2+–VIFe3+ clusters. Physics and Chemistry of Minerals, 29, 319330.Google Scholar
Hålenius, U., Andreozzi, G.B. and Skogby, H., (2010) Structural relaxation around Cr3+ and the red-green color change in the spinel (sensu stricto)-magnesio¡- chromite (MgAl2O4-MgCr2O4) and gahnite-zincochromite (ZnAl2O4-ZnCr2O4) solid-solution series. American Mineralogist, 95, 456462.CrossRefGoogle Scholar
Harrison, R.J., Redfern, S.A.T. and O’Neill, H.St.C. (1998) The temperature dependence of the cation distribution in synthetic hercynite (FeAl2O4) from in-situ neutron diffraction refinements. American Mineralogist, 83, 10921099.CrossRefGoogle Scholar
Heimann, A., Spry, P.G. and Teale, G.S. (2005) Zincian spinel associated with metamorphosed Proterozoic base-metal sulphide occurences, Colorado: A reevaluation of gahnite composition as a guide in exploration. The Canadian Mineralogist, 43, 601622.CrossRefGoogle Scholar
Henry, D.J. and Dutrow, B.L. (2001) Compositional zoning and element partitioning in nickeloan tourmaline from a metamorphosed karstbauxite from Samos, Greece. American Mineralogist, 86, 11301142.CrossRefGoogle Scholar
Hicks, J.A., Moore, J.M. and Reid, A.M. (1985) The co-occurrence of green and blue gahnite in the Namaqualand Metamorphic Complex, South Africa. The Canadian Mineralogist, 23, 535542.Google Scholar
Hofmeister, A.M. (2007) Thermal diffusivity of aluminous spinels and magnetite at elevated temperature with implications for heat transport in Earth’s transition zone. American Mineralogist, 92, 18991911.CrossRefGoogle Scholar
Jackson, B. (1982) Gem quality gahnite from Nigeria. Journal of Gemmology, 18, 265276.CrossRefGoogle Scholar
Lavina, B., Salviulo, G., and Della Giusta, A., (2002) Cation distribution and structure modeling of spinel solid solutions. Physics and Chemistry of Minerals, 29, 1018.CrossRefGoogle Scholar
Lenaz, D., Skogby, F., Princivalle, F., and Hålenius, U. (2004) Structural changes and valence states in the MgCr2O4–FeCr2O4 solid solution series. Physics and Chemistry of Minerals, 31 ,633642.CrossRefGoogle Scholar
Lόpez-Moreno, S., Rodríguez-Hernández, P., Mun˜oz, A., Romero, A.H., Manjόn, F.J., Errandonea, D., Rusu, E., and Ursaki, V.V. (2011) Lattice dynamics of ZnAl2O4 and ZnGa2O4 under high pressure. Annalen der Physik, 523, 157167.CrossRefGoogle Scholar
Lucchesi, S., Della Giusta, A., and Russo, U., (1998) Cation distribution in natural Zn-aluminate spinels. Mineralogical Magazine, 62, 4154.CrossRefGoogle Scholar
Morris, T.F., Breaks, F.W., Averill, S.A., Crabtree, D.C. and McDonald, A., (1997) Gahnite composition: implications for base metal and rare-element exploration. Exploration Mining Geology, 6, 253260.Google Scholar
Novák, M., Houzar, S., and Rein, V., (1997) Gahnitebearing marbles and their significance for regional classification of the eastern part of the Bohemian Massif. Journal of the Czech Geological Society, 42, 3340.Google Scholar
O’Neill, H.St.C. and Dollase, W.A. (1994) Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4 . Physics and Chemistry of Minerals, 20, 541555.CrossRefGoogle Scholar
Parr, J. (1992) A gahnite–garnet retrograde reaction from the Pinnacles deposit, Broken Hill, New South Wales, Australia. The Canadian Mineralogist, 30, 145.152.Google Scholar
Popović, J., Tkalčec, E., Gržeta, B., Kurajica, S., and Rakvin, B., (2009) Inverse spinel structure of Codoped gahnite. American Mineralogist, 94, 771776.CrossRefGoogle Scholar
Pouchou, L.J. and Pichoir, F., (1984) New model quantitative x-ray microanalysis, 1. Application to the analysis of homogeneous samples. La Recherche Aérospatiale, 3, 1338.Google Scholar
Praveen, M.N. and Ghosh, B., (2007) Multiple origins of gahnite associated with hydortermal alteration from the Bhuyari base metal prospect of Proterozoic Betul Belt, Madhya Pradesh. Journal Geological Society of India, 69, 233241.Google Scholar
Reichmann, H.J. and Jacobsen, S.D. (2006) Sound velocities and elastic constants of ZnAl2O4 spinel and implications for spinel-elasticity systematics. American Mineralogist, 91, 10491054.CrossRefGoogle Scholar
Saalfeld, H. (1964) Strukturdaten von Gahnit, ZnAl2O4 . Zeitschrift für Kristallographie, 120, 476478.Google Scholar
Sampath, S.K. and Cordaro, J.F. (1998) Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels. Journal of the American Ceramic Society, 81, 649652.CrossRefGoogle Scholar
Sandhaus, D.J. and Craig, J.R. (1986) Gahnite in the metamorphosed stratiform massive sulfide deposits of the mineral district, Virginia, U.S.A. Tschermaks Mineralogische und Petrographische Mitteilungen, 35, 77.98.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Schmetzer, K. and Bank, H., (1985) Crystal chemistry of zincian spinels (gahnospinels) from Sri Lanka. Neues Jahrbuch für Mineralogie, 8, 353356.Google Scholar
Schmetzer, K., Haxel, C., and Bank, H., (1989) Colour of natural spinels, gahnospinels and gahnites. Neues Jahrbuch für Mineralogie, 160, 159180.Google Scholar
Skogby, H. and Hålenius, U. (2003) An FTIR study of tetrahedrally coordinated ferrous iron in the spinelhercynite solid solution. American Mineralogist, 88, 489492.CrossRefGoogle Scholar
Spry, P.G. (1987) Compositional zoning in zincian spinel. The Canadian Mineralogist, 25, 97.104.Google Scholar
Spry, P.G. and Scott, S.D. (1986a) Zincian spinel and staurolite as guides to ore in the Appalachians and Scandinavian Caledonides. The Canadian Mineralogist, 24, 147163.Google Scholar
Spry, P.G. and Scott, S.D. (1986b) The stability of zincian spinels in sulphide systems and their potential as exploration guides for metamorphosed massive sulphide deposits. Economic Geology, 81, 1446.–1463.CrossRefGoogle Scholar
Sundblad, K. (1994). A genetic reinterpretation of the Falun and Å mmeberg ore types, Bergslagen, Sweden. Mineralium Deposita, 29, 170179.Google Scholar
Suszkiewicz, A. and Lobos, K., (2004) Gahnite from Siedlimowice, Strzegom-Sobόtka. Granitic Massif, SW Poland. Mineralogia Polonica, 35 (2), 1521.Google Scholar
Taran, M.N., Koch-Müller, M. and Langer, K., (2005) Electronic absorption spectroscopy of natural (Fe2+,Fe3+)-bearing spinels of spinel s.s.-hercynite and gahnite–hercynite solid solutions at different temperatures and high-pressures. Physics and Chemistry of Minerals, 32, 175188.CrossRefGoogle Scholar
Valenzuela, M.A., Jacobs, J.P., Bosch, P., Reijne, S., Zapata, B., and Brongersma, H.H. (1997) The influence of the preparation method on the surface structure of ZnAl2O4 . Applied Catalyst A, 148, 315324.CrossRefGoogle Scholar
Van der Laag, N.J., Snel, M.D., Magusin, P.C.M.M. and de With, G., (2004) Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4). Journal of the European Ceramic Society, 24, 24172424.CrossRefGoogle Scholar
Visser, D., Thijssen, P.H.M. and Schumacher, J.C. (1992) Högbomite in sapphirine-bearing rocks from the Bamble Sector, south Norway. Mineralogical Magazine, 56, 343351.CrossRefGoogle Scholar
Waerenborgh, J.C., Annersten, H., Ericsson, T., Figueiredo, M.O. and Cabral, J.M.P. (1990) A Mössbauer study of natural gahnite spinels showing strongly temperature-dependent quadrupole splitting distributions. European Journal of Mineralogy, 2, 267271.CrossRefGoogle Scholar
Waerenborgh, J.C., Figueiredo, M.O., Cabral, J.M.P. and Pereira, L.C.J. (1994) Powder XRD structure refinements and 57Fe Mössbauer effect study of synthetic Zn1-xFexAl2O4 (0 < x 1) spinels annealed at different temperatures. Physics and Chemistry of Minerals, 21, 460468.CrossRefGoogle Scholar
Yalçin, Ü., Schreyer, W., and Medenbach, O., (1993) Znrich hö gbomite formed from gahnite in the metabauxites of the Menderes Massif, SW Turkey. Contributions to Mineralogy and Petrology, 113, 314324.CrossRefGoogle Scholar