Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T19:47:01.222Z Has data issue: false hasContentIssue false

The cyclic unit beneath the UG1 chromitite (UGIFW unit) at RPM Union Section Platinum Mine—Rosetta Stone of the Bushveld Upper Critical Zone?

Published online by Cambridge University Press:  05 July 2018

H. V. Eales
Affiliation:
Department of Geology, Rhodes University, Grahamstown, South Africa
W. J. de Klerk
Affiliation:
Department of Geology, Rhodes University, Grahamstown, South Africa
A. R. Butcher
Affiliation:
Department of Geology, Rhodes University, Grahamstown, South Africa

Abstract

The UG1 Footwall unit is a layered pyroxenite-norite-leuconorite-anorthosite sequence between the Middle Group 4 and Upper Group 1 chromitites of the Upper Critical Zone, and is c. 300 m thick at Rustenburg Platinum Mines, Union Section, where it shows an oscillatory fluctuation in whole-rock Mg/(Mg + Fe), Cr/Co, Ni/V and Fe/Ti ratios with stratigraphic height. This permits subdivision into 8 sub-cycles which match a subdivision based on cyclical variations in orthopyroxene and feldspar compositions. Constituent pyroxene grains of pyroxenites, norites and leuconorites alike contain rounded and embayed plagioclase inclusions in abundance. Sr-isotope disequilibrium prevails in some samples between the orthopyroxene and feldspar populations. Chemical and isotopic data support a model of pulsatory injection of limited volumes of a more primitive, mafic liquid into a resident column of depleted residua, from which sodic labradorite and Mg-poor bronzite were crystallizing. The depleted liquid is equated with the supernatant liquid residuum of buried cumulates (Sric. 0.7054) and the primitive liquid with magma parental to the UG1-UG2 lineage (Sri ⩾ 0.7068). The increase in leucocratic character of the 300 m column, with height, is attributed to the rising of low-density liquids enriched in the components of feldspar during separation of the pyroxenites. Deposition of the UG1 chromitite layers is attributed to mixing of a major influx of primitive liquid with a feldspathic residuum at the top of the UG1 Footwall unit. There is no evidence to indicate the participation of a discrete A-type liquid (Irvine and Sharpe, 1982) in this process.

Type
Geochemistry and Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, S. J. (1986) Contrib. Mineral. Petrol. 93, 524-31.CrossRefGoogle Scholar
Barnes, S. J. and Naldrett, A. J. (1986) J. Petrol. 27, 791-825.CrossRefGoogle Scholar
Cameron, E. N. (1964) I. Geology of some ore deposits in southern Africa, 2, Geol. Soc. S. Africa, 131-68.Google Scholar
Cameron, E. N. (1982) Econ. Geol. 77, 130-27.CrossRefGoogle Scholar
Campbell, I. H. (1987) J. Geol. 95, 35-54.CrossRefGoogle Scholar
Campbell, I. H. and Turner, J. S. (1986) In Short course in silicate melts (Scarfe, C. M., ed.) Min. Assoc. Canada, 236-78.Google Scholar
Campbell, I. H., Naldrett, A. J. and Barnes, S. J. (1983) J. Petrol. 24, 133-65.CrossRefGoogle Scholar
Coertze, F. J. (1958) Geol. Soc. S. Africa Trans. 61, 387-92.Google Scholar
Eales, H. V. (1987) In Evolution of chromium orefields, ETAL. (Stowe, C. W, ed.) Van Nostrand Reinhold Co., New York, 144-68.Google Scholar
Eales, H. V., Marsh, J. S., Mitchell, A. A., de Klerk, W. J., Kruger, F. J. and Field, M. (1986) Mineral. Mag. 50, 567-82.CrossRefGoogle Scholar
Eales, H. V., Field, M., de Klerk, W. J. and Scoon, R. N. (1988) Ibid. 52, 63-80.Google Scholar
Harmer, R. E. and Sharpe, M. R. (1985) Econ. Geol. 80, 813-37.CrossRefGoogle Scholar
Hatton, C. J. (1986) Abstr. Geoeongress Geol. Soc. S. Africa, 595-98.Google Scholar
Hatton, C. J. and von Gruenewaldt, G. (1987) In In Evolution of chromium orefields (Stowe, C. W., ed.) Van Nostrand Reinhold Co., New York, 109-43.Google Scholar
Henderson, P. (1968) Geochim. Cosmochim. Acta 32, 897-911.CrossRefGoogle Scholar
Irvine, T. N. and Sharpe, M. R. (1982) Carnegie Inst. Washington Ybk 81, 294-303.Google Scholar
Keith, D. W. and Todd, S. G. (1983) Econ. Geol. 78, 1287-334.Google Scholar
Kruger, F. J. (1988) Nuclear Active 38, 30-2.Google Scholar
Lee, C. A. (1981) J. Geol. Soc. London, 138, 32-41.CrossRefGoogle Scholar
Morse, S. A. (1979)J. Geol. 87, 202-8.CrossRefGoogle Scholar
Norrish, K. and Hutton, J. T. (1969) Geochim. Cosmichim. Acta, 33, 431-53.CrossRefGoogle Scholar
Sampson, E. (1932) Econ. Geol. 27, 113-44.CrossRefGoogle Scholar
Sharpe, M. R. (1985) Nature, 316, 119-26.CrossRefGoogle Scholar
Sparks, R. S. J., Huppert, H. E. and Turner, J. S. (1984) Phil. Trans. Roy. Soc. London, A310, 511-34.Google Scholar
Smith, J. V. (1974) Feldspar Minerals', 2. Springer-Verlag, New York.Google Scholar
Tait, S. R., Huppert H. E. and Sparks, R. S. J. (1984) Lithos, 17, 139-46.CrossRefGoogle Scholar
Teigler, B. (1989) Ph.D. thesis, Rhodes University (in prep.).Google Scholar
Vermaak, C. F. (1976) Econ. Geol. 71, 1270-98.CrossRefGoogle Scholar
Viljoen, M. J., de Klerk, W. J., Coetzer, P. M., Hatch, N. P., Kinloch, E. and Peyerl, W. (1986a) in Mineral deposits of Southern Africa (Anhaeusser, C. R. and Maske, S., Eds.) Geol. Soc. S. Africa, 1061-90.Google Scholar
Viljoen, M. J., Theron, J., Underwood, B., Waiters, B. M., Weaver, J. and Peyerl, W. (1986b) Ibid. 1041-60.Google Scholar
Wager, L. R. and Brown, G. M. (1968) Layered lgneous Rocks, Oliver and Boyd, Edinburgh.Google Scholar