Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T00:49:14.577Z Has data issue: false hasContentIssue false

Mineralogy of a unique graphite-containing fragment in the Krymka chondrite (LL3)

Published online by Cambridge University Press:  05 July 2018

V. P. Semenenko
Affiliation:
Institute of Geochemistry, Mineralogy and Ore Formation National Academy of Sciences of Ukraine, Paladin-34, Kiev-142, Ukraine Museum National d'Histoire Naturelle, Paris, France
A. L. Girich
Affiliation:
Institute of Geochemistry, Mineralogy and Ore Formation National Academy of Sciences of Ukraine, Paladin-34, Kiev-142, Ukraine

Abstract

The Krymka chondrite contains an exotic graphite-bearing fragment that appears to be of a new type of material added to unequilibrated LL-chondrite during agglomeration on the surface of the parent body. The fine-granular texture without chondrules, two morphological groups of graphite crystals which differ in size and occurence, high content of troilite (11.3 vol.%), the high Ni (55.5–66.6 wt.%) and Co (1.59–2.87 wt.%) contents of the taenite and absence of kamacite, the presence of F-apatite, which is rare for meteorites but common for lunar and terrestrial igneous rocks, are the main features of the fragment.

The mineralogy and texture indicate: (1) the fragment probably formed by crystallization from a highly reduced silicate melt, which had been enriched in carbon; 2) the subsequent metal sulphidization lowered its abundance and resulted in the formation of troilite and the compositional features of the residual metal; (3) terrestrial weathering of an exotic fragment and the host part of the chondrite produced iron hydroxides, pentlandite and quite possibly magnetite.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C.M.O., Hutchison, R. and Barber, D.J. (1989) Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites. Earth Planet. Sci. Lett., 95, 187–207.CrossRefGoogle Scholar
Amari, S., Anders, E., Virag, A. and Zinner, E. (1990) Interstellar graphite in meteorites. Nature, 345, 238–40.CrossRefGoogle Scholar
Berezhkova, G.V. (1969) Filiform crystals. Nauka, Moscow. 158 pp. (In Russian).Google Scholar
Berkley, J.L., Taylor, G. and Keil, K. (1980) The nature and origin of ureilites. Geochim. Cosmochim. Ada, 44, 1579–97.CrossRefGoogle Scholar
Bevan, A.W.R., Bevan, J. C. and Francis, J.G. (1977) Amphibole in the Mayo Belva meteorite: first occurence in an enstatite achondrite. Mineral. Mag., 41, 531–4.CrossRefGoogle Scholar
Brearley, A.J., Scott, E.R.D. and Keil, K. (1987) Carbon-rich aggregates in ordinary chondrites: transmission electron microscope observations of Sharps (H3) and Plainview (H regolith breccia). Meteoritics, 22, 338–9.Google Scholar
Bunch, T.E., Keil, K. and Snetsinger, K.G. (1967) Chromite composition in relation to chemistry and texture of ordinary chondrites. Geochim. Cosmochim. Ada, 31, 1569–82.CrossRefGoogle Scholar
Buseck, P.R. (1977) Pallasite meteorites — mineralogy, petrology and geochemistry. Geochim. Cosmochim. Ada, 41, 711–40.CrossRefGoogle Scholar
Dodd, R.T.J., van Schmus, W.R. and Koffman, D.M. (1967) A survey of the unequilibrated ordinary chondrites. Geochim. Cosmochim. Ada, 31, 921–53.CrossRefGoogle Scholar
Fodor, R.V. and Keil, K. (1978) Catalog of lithic fragments in LL group chondrites. UNM Institute of Meteoritics, New Mexico. 38 pp.Google Scholar
Frondel, J.W. (1978) Lunar mineralogy. Mir, Moscow. 333 pp. (In Russian).Google Scholar
Fuchs, L.H. (1968) The phosphate mineralogy of meteorites. In: Meteorite Research (Millman, P.M., ed.), pp. 683-95. Springer-Verlag.Google Scholar
Givargizov, E.I. (1977) The growth of filiform and plate crystals from steam. Nauka, Moscow. 303 pp. (In Russian).Google Scholar
Grossman, L., Allen, J.M. and MacPherson, G.J. (1980) Electron microprobe study of a ‘mysterite'-bearing inclusion from the Krymka LL-chondrite. Geochim. Cosmochim. Acta, 44, 211–6.CrossRefGoogle Scholar
Haggerty, S.E. (1974) Luna 16. An opaque mineral study and a systematic examination of compositional variations of spinels from Mare Fecunditatis. In: Lunar soil from the Sea of Fertility (Vinogradov, A.P., ed.), pp.181-204. Nauka, Moscow. (In Russian).Google Scholar
Higuchi, H., Ganapathy, R., Morgan, J.W. and Anders, E. (1977) ‘Mysterite': a late condensate from the solar nebula. Geochim. Cosmochim. Acta, 41, 843–52.CrossRefGoogle Scholar
Huss, G.R., Keil, K. and Taylor, G.J. (1981) The matrices of unequilibrated ordinary chondrites: implications for the origin and history of chondrites. Geochim. Cosmochim. Acta, 45, 33–51.CrossRefGoogle Scholar
Lungck, M.H.A., Meier, F.O. and Eberhardt, P. (1981) Apatite in Orgueil. Carrier phase for neon-E. Meteoritics, 16, 336–7.Google Scholar
Keil, K. and Fredriksson, K. (1964) The iron, magnesium and calcium distribution in coexisting olivines and rhombic pyroxenes of chondrites. J. Geophys. Res., 69, 3487–515.CrossRefGoogle Scholar
Lewis, R.S., Alaerts, L., Hetrogen, J., Jassens, M.-J., Palme, H. and Anders, E. (1979) A carbonaceous inclusion from the Krymka LL-chondrite: noble gases and trace elements. Geochim. Cosmochim. Acta, 43, 897–903.CrossRefGoogle Scholar
Lumpkin, G.R. (1986) High resolution electron microscopy of carbonaceous material from CI, CM, CV and H chondrites (abstract). Lunar Planet. Sci., 17, 502–3.Google Scholar
Misra, K.S. and Fleet, M.E. (1973) The chemical compositions of synthetic and natural pentlandite assemblages. Econ. Geol, 68, 518–39.CrossRefGoogle Scholar
Nagahara, H. (1984) Matrices of type 3 ordinary chondrites — primitive nebular records. Geochim. Cosmochim. Acta, 48, 2581–95.CrossRefGoogle Scholar
Rambaldi, E.R. and Wasson, J.T. (1980) The origin of chondrule rims in the Bishunpur (L3) chondrite. Meteoritics, 15, 352.Google Scholar
Rambaldi, E.R. and Wasson, J.T. (1984) Metal and associated phases in Krymka and Chainpur: Nebular formational processes. Geochim. Cosmochim. Acta, 48, 1885–97.CrossRefGoogle Scholar
Ramdohr, P. (1962) The ore minerals and their intergrowths. IL, Moscow. 1132 pp. (In Russian).Google Scholar
Ramdohr, P. (1973) The opaque minerals in stony meteorites. Elsevier. 242 pp.Google Scholar
Scott, E.R.D., Rubin, A.E., Taylor, G.J. and Keil, K. (1981a) New kind of type 3 chondrite with a graphite-magnetite matrix. Earth Planet. Sci. Lett., 56, 19–31.CrossRefGoogle Scholar
Scott, E.R.D., Taylor, G.J., Rubin, A.E., Okada, A. and Keil, K. (19816) Graphite-magnetite aggregates in ordinary chondritic meteorites. Nature, 291, 544–6.CrossRefGoogle Scholar
Scott, E.R.D., Brearley, A.J., Keil, K., Grady, M.M., Pillinger, C.T., Clayton, R.N., Mayeda, T.K., Wieler, R. and Signer, P. (1988) Nature and origin of C-rich ordinary chondrites and chondritic clasts. Proc. Lunar Planet. Sci. Conf. 18th, 513-23.Google Scholar
Semenenko, V.P., Melnikov, V.S. and Samoilovich, L.G. (1978) About the Krymka meteorite. Meteoritika, 37, 93–100. (In Russian).Google Scholar
Semenenko, V.P., Sobotovich, E.V. and Tertichnaya, B.V. (1987) Meteorites of Ukraine. Naukova Dumka, Kiev. 171 pp. (In Russian).Google Scholar
Semenenko, V.P., Kolesov, G.M., Samoilovich, L.G., Golovko, N.V. and Ljul, A.Yu. (1991a) Carbonaceous inclusions in the Krymka (LL3) chondrite (abstract). Lunar Planet. Sci., 22, 1213–4.Google Scholar
Semenenko, V.P., Kolesov, G.M, Samoilovich, L.G., Golovko, N.V., Ljul, A.Yu. and Kovalyukh, N.N. (19916) Carbonaceous inclusions in the Krymka (LL3) chondrite. Geokhimia, 8, 1111–21. (In Russian).Google Scholar
Stoffler, D., Keil, K. and Scott, E.R.D. (1991) Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta, 55, 3845–67.CrossRefGoogle Scholar
Taylor, G.J., Okada, A., Scott, E.R.D., Rubin, A.E., Huss, G.R. and Keil, K. (1981) The occurrence and implications of carbide-magnetite assemblages in unequilibrated ordinary chondrites (abstract). Lunar Planet. Sci., 12, 1076–8.Google Scholar
Van Schmus, W.R. and Ribbe, P.H. (1969) Composition of phosphate minerals in ordinary chondrites. Geochim. Cosmochim. Acta, 33, 637–40.CrossRefGoogle Scholar
Yudin, LA. and Kolomensky, V.D. (1987) Mineralogy of meteorites. Sverdlovsk. 200 pp. (In Russian).Google Scholar
Yudin, I.A., Loginov, V.N., Reznikova, L.A. et al. (1983) Secondary minerals and structures of Tzarev meteorite. Meteoritika, 43, 55–65. (In Russian).Google Scholar
Zinner, E., Wopenka, B., Amari, S. and Anders, E. (1990) Interstellar graphite and other carbonaceous grains from the Murchison meteorite: Structure, composition and isotopes of C, N and Ne (abstract). Lunar Planet. Sci., 21, 1379–80.Google Scholar