Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:19:19.200Z Has data issue: false hasContentIssue false

A new mineral, zincolibethenite, CuZnPO4OH, a stoichiometric species of specific site occupancy

Published online by Cambridge University Press:  05 July 2018

R. S. W. Braithwaite
Affiliation:
School of Chemistry, Faraday Building, University of Manchester, Manchester M60 1QD, UK Abteilung Mineralogie und Materialwissenschaften, Fachbereich Geographie, Geologie und Mineralogie, Universität Salzburg, Hellbrunnerstrasse 34, A-5020, Salzburg, Austria
R. G. Pritchard*
Affiliation:
School of Chemistry, Faraday Building, University of Manchester, Manchester M60 1QD, UK
W. H. Paar
Affiliation:
Abteilung Mineralogie und Materialwissenschaften, Fachbereich Geographie, Geologie und Mineralogie, Universität Salzburg, Hellbrunnerstrasse 34, A-5020, Salzburg, Austria
R. A. D. Pattrick
Affiliation:
Department of Earth Sciences, University of Manchester, Manchester M13 9PL, UK

Abstract

Tiny green crystals from Kabwe, Zambia, associated with hopeite and tarbuttite (and probably first recorded in 1908 but never adequately characterized because of their scarcity) have been studied by X-ray diffraction, microchemical and electron probe microanalysis, infrared spectroscopy, and synthesis experiments. They are shown to be orthorhombic, stoichiometric CuZnPO4OH, of species rank, forming the end-member of a solid-solution series to libethenite, Cu2PO4OH, and are named zincolibethenite. The libethenite structure is unwilling to accommodate any more Zn substituting for Cu at atmospheric pressure, syntheses using Zn-rich solutions precipitating a mixture of zincolibethenite with hopeite, Zn3(PO4)2.4H2O. Single-crystal X-ray data confirm that the Cu(II) occupies the Jahn-Teller distorted 6-coordinate cation site in the libethenite lattice, and the Zn(II) occupies the 5-coordinate site. The space group of zincolibethenite is Pnnm, the same as that of libethenite, with unit-cell parameters a = 8.326, b = 8.260, c = 5.877 Å , V = 404.5 Å 3, Z = 4, calculated density = 3.972 g/cm3 (libethenite has a = 8.076, b = 8.407, c = 5.898 Å , V = 400.44 Å 3, Z = 4, calculated density = 3.965 g/cm3). Zincolibethenite is biaxial negative, with 2Vα(calc.) of 49°, r<v, and α = 1.660, β = 1.705, and γ = 1.715 The mineral is named for its relationship to libethenite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aires-Barros, I. (1970) X-ray and infrared spectroscopy of descloizite, libethenite and atacamite from the mines of Preguica, Vieiros and Bogalho, Alentejo, south Portugal. Boletim da Sociedade Geologica de Portugal, 17, 5164.Google Scholar
Braithwaite, R.S.W. (1983) Infrared spectroscopic analysis of the olivenite-adamite series, and of phosphate substitution in olivenite. Mineralogical Magazine, 47, 5157.CrossRefGoogle Scholar
Braithwaite, R.S.W. (1988) Spencerite from Kabwe, Zambia, and the infrared spectroscopy of the Kabwe zinc phosphates. Mineralogical Magazine, 52, 126129.CrossRefGoogle Scholar
Chisholm, J.E. (1985) Cation segregation and the O-H stretching vibration of the olivenite-adamite series. Physical Chemistry of Minerals, 12, 185190.CrossRefGoogle Scholar
Cocco, G., Fanfani, L. and Zanazzi, P.F. (1966) The crystal structure of tarbuttite, Zn2(OH)PO4 . Zeitschrift für Kristallographie, 123, 321329.CrossRefGoogle Scholar
Farmer, V.C., editor (1974) The Infrared Spectra of Minerals. Monograph 4, Mineralogical Society, London.CrossRefGoogle Scholar
Frost, R.L., Williams, P.A., Martens, W., Kloprogge, J.T. and Leverett, P. (2002) Raman spectroscopy of the basic copper phosphate minerals cornetite, libethenite, pseudomalachite, reichenbachite and ludjibaite. Journal of Raman Spectroscopy, 33, 260263.CrossRefGoogle Scholar
Gevork'yan, S.V. and Povarennykh, A.S. (1975) The IR spectra of some hydroxyl- containing copper and zinc phosphates and arsenates. Konstitutsiya i Svoistva Mineralov, 9, 7381.Google Scholar
Guillemin, C. (1956) Contribution a la mineralogie des arseniates, phosphates et vanadates de cuivre. Bulletin de la Societé française de Minéralogie et Cristallographie, 79, 795.CrossRefGoogle Scholar
Harrison, W.T.A., Vaughey, J.T., Dussack, L.L., Jacobson, A.J., Martin, T.E. and Stucky, G.D. (1995) Two new adamite-type phases, Co2(OH)PO4 and Zn2(OH)PO4; structure-directing effect of organic additives. Journal of Solid State Chemistry, 114, 151158.CrossRefGoogle Scholar
Hill, R.J. and Jones, J.B. (1976) The crystal structure of hopeite. American Mineralogist, 61, 987995.Google Scholar
Kawahara, A., Moritani, H. and Yamakawa, J. (1994) Crystal structure of synthetic zinc monophosphate Zn2(OH)PO4: a polymorph of tarbuttite. Mineralogical Journal (Japan), 17, 132139.CrossRefGoogle Scholar
Keller, P., Hess, H. and Zettler, F. (1979) Ladungsbilanzen an den verfeinerten Kristall-strukturen von Libethenit, Actamin und Co[OH/ AsO4] und ihre Wasserstoffbrückenbindungen. Neues Jahrbuch für Mineralogie, Abhandlungen, 134, 147159.Google Scholar
Magalhāes, M.C.F., de Jesus, J.P. and Williams, P.A. (1986) Stability constants and formation of Cu(II) and Zn(II) phosphate minerals in the oxidised zone of base metal orebodies. Mineralogical Magazine, 50, 3339.Google Scholar
Martens, W. and Frost, R.L. (2003) An infrared spectroscopic study of the basic copper phosphate minerals: Cornetite, libethenite and pseudomala-chite. American Mineralogist, 88, 3746.CrossRefGoogle Scholar
Mennell, F.P. (1920) Rare zinc-copper minerals from the Rhodesian Broken Hill mine, Northern Rhodesia. Mineralogical Magazine, 19, 6972.CrossRefGoogle Scholar
Moenke, H. (1962) Mineralspektren, 1. Akademie-Verlag, Berlin.Google Scholar
Moenke, H. (1966) Mineralspektren, 2. Akademie-Verlag, Berlin.Google Scholar
Notebaart, C.W. and Korowski, S.P. (1980) The Broken Hill mine, Zambia. Mineralogical Record, 11, 339348.Google Scholar
Spencer, L.J. (1908) On hopeite and other zinc phosphates and associated minerals from the Broken Hill mines, North-Western Rhodesia. Mineralogical Magazine, 15, 138.CrossRefGoogle Scholar
Toman, K. (1978) Ordering in olivenite-adamite solid solutions. Acta Crystallographica, B34, 715721.CrossRefGoogle Scholar