Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T23:01:39.113Z Has data issue: false hasContentIssue false

Sphalerite composition in relation to deposition and metamorphism of the Foss stratiform Ba-Zn-Pb deposit, Aberfeldy, Scotland

Published online by Cambridge University Press:  05 July 2018

Norman R. Moles*
Affiliation:
Grant Institute of Geology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW

Abstract

Sphalerite is a common constituent of the mineralized rocks and host metasediments of the Foss baryte-base metal deposit, located near Aberfeldy in the central Scottish Highlands. Microprobe analyses of sphalerite show a wide range in minor element content (0–17 mol. % FeS, 0–3 mol. % MnS), and sphalerites of contrasting composition are often found in the same rock. This suggests that equilibrium domains in some rocks were minute (< 1 mm), during regional metamorphism. Pressures derived from the selective application of the sphalerite geobarometer are consistent with other mineralogical evidence of peak metamorphic pressures in the range 7–10 kbar, at 540–580 °C. However, there is considerable evidence of partial retrograde re-equilibration of sphalerite, by continued buffering with pyrite+ pyrrhotine and by outward diffusion of iron. Marginal depletion of Fe and Mn in sphalerite within coarse carbonate rocks is attributed to partitioning reactions following recrystallization. Sphalerite which has retained its pre-metamorphic composition shows systematic variations in composition through profiles of mineralized beds, which may be related to depositional environments. Bimodal primary compositions can be explained by precipitation of zinc sulphides under the contrasting chemical environments of hydrothermal vents and cooler, exhaled brine layers on the sea floor.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderton, R. (1979) In The Caledonides of the British Isles—reviewed (Harris, A. L. et al., eds.), Geol. Soc. Lond. 483–8.Google Scholar
Barton, P. B. Jr, (1970) Mineral. Soc. Am. Spec. Pap. 3, 187–98.Google Scholar
Barton, P. B. Jr, and Skinner, B. J. (1979) In Geochemistry of Hydrothermal Ore Deposits, 2nd edn (Bames, H. L., ed.), Wiley, New York. 278403.Google Scholar
Barton, P. B. Jr, and Toulmin, P. (1966) Econ. Geol. 61, 815–49.CrossRefGoogle Scholar
Bickle, M. J., and Powell, R. (1977) Contrib. Mineral. Petrol. 59, 281–92.CrossRefGoogle Scholar
Boctor, N. Z. (1980) Am. Mineral. 65, 1031–7.Google Scholar
Bradbury, H. J., Harris, A. L., and Smith, R. A. (1979) In The Caledonides of the British Isles—reviewed (Harris, A. L. et al., eds.), Geol. Soc. Lond. 213–20.Google Scholar
Brown, P. E., Essene, E. J., and Kelly, W. C. (1978) Am. Mineral. 63, 250–7.Google Scholar
Campbell, F. A., and Ethier, V. G. (1983) Mineral. Deposita, 18, 3955.CrossRefGoogle Scholar
Coats, J. S., Smith, C. G., Fortey, N. J., Gallagher, M. J., May, F., and McCourt, W. J. (1980) Trans. Inst. Mining Metall.B, S9, 110–22.Google Scholar
Coats, J. S. et al. (1981) Inst. Geol. Sci. Miner, Reconn. Rep. No. 40, 116 pp.Google Scholar
Croxford, N. J. W. (1968) Proc. Aust. Inst. Mining Metall. 226, 97108.Google Scholar
Croxford, N. J. W. and Jephcott, S. (1972) Ibid. 243, 1-26.Google Scholar
Doe, B. R. (1962) Geol. Soc. Am. Bull. 73, 833–54.CrossRefGoogle Scholar
Ferry, J. M., and Spear, F. S. (1978) Contrib. Mineral. Petrol. 66, 113–17.CrossRefGoogle Scholar
Finlow-Bates, T. (1980) Geol. Jahrb. D40, 131–68.Google Scholar
Fortey, N. J., and Beddoe-Stephens, B. (1982) Mineral. Mag. 46, 6372.CrossRefGoogle Scholar
Groves, D. I., Binns, R. A., Bassett, F. M., and McQueen, K. G. (1975) Econ. Geol. 70, 391–6.CrossRefGoogle Scholar
Hutchison, M. N., and Scott, S. D. (1981) Ibid. 76,143–53.Google Scholar
Large, D. E. (1981) In Handbook of stratabound and stratiform ore deposits 9 (Wolf, K. H., ed.), 469508. Elsevier, Amsterdam.Google Scholar
Large, R. R. (1977) Econ. Geol. 72, 549–72.CrossRefGoogle Scholar
Lusk, J., and Ford, C. E. (1978) Am. Mineral. 63, 516–19.Google Scholar
McLimans, R. K., Barnes, H. L., and Ohmoto, H. (1980) Econ. Geol. 75, 351–61.CrossRefGoogle Scholar
Mathias, B. U., Morris, D., and Russell, R. E. (1973) Bull. Bur. Mineral. Resour. Australas. 141, 3358.Google Scholar
Moles, N. R. (1982) Mineral. Soc. Bull. 57, December 1982.Google Scholar
Moles, N. R. (1983) Geol. Soc. Lond., Newsletter, September 1983.Google Scholar
Newton, R. C. and Haselton, H. T. (1981) In Thermodynamics of Minerals and Melts (Newton, R. C. A. Navrotsky, and B. J. Wood, eds.), Springer-Verlag.CrossRefGoogle Scholar
Nitsch, K.-H. (1980) Fortschr. Mineral. 58, 98100.Google Scholar
Oehler, J. H., and Logan, R. G. (1977) Econ. Geol. 72, 1393–409.CrossRefGoogle Scholar
Page, D. C. and Watson, M. D. (1976) Ibid. 71, 306–27.Google Scholar
Plimer, I. R. (1979) Mineral. Deposita, 14, 207–18.CrossRefGoogle Scholar
Plimer, I. R. (1980) Ibid. 15, 237–41.Google Scholar
Reinecke, T. (1982) Contrib. Mineral. Petrol. 79, 333–6.CrossRefGoogle Scholar
Rozendaal, A. (1978) In Mineralisation in metamorphic terrains (Verwoerd, W. J., ed.), Geol. Soc. S. Afr. Spec. Publ. No. 4, 235–65.Google Scholar
Russell, M. J., Willan, R. C. R., Anderton, R., Hall, A. J., Nicholson, K., and Sraythe, D. K. (1981a) In Correlation of Caledonian stratabound sulphides, symposium volume (Hall, A. J. and Gallagher, M. J., eds.), Glasgow 1–2 May 1981, 24–9.Google Scholar
Solomon, M., and Walshe, J. L. (1981b) Mineral. Dep. 16, 113–27.Google Scholar
Sato, T. (1972) Min. Geol. Tokyo, 22, 3142.Google Scholar
Sato, T. (1973) Geochem. J., Tokyo, 7, 245–70.CrossRefGoogle Scholar
Sato, T. (1977) In Volcanic processes in ore genesis. Geol. Soc. Lond., Special Pub. 7, 153–61.Google Scholar
Schroll, E., Schulz, O., and Pak, E. (1983) Mineral. Deposita, 18, 1725.CrossRefGoogle Scholar
Scott, S. D. (1973) Econ. Geol. 68, 466–74.CrossRefGoogle Scholar
Scott, S. D. (1976) Am. Mineral. 61, 661–70.Google Scholar
Scott, S. D. (1983) Mineral. Mag. 47, 427–35.CrossRefGoogle Scholar
Scott, S. D. and Barnes, H. L. (1971) Econ. Geol. 66, 653–69.CrossRefGoogle Scholar
Scott, S. D. and Kissin, S. A. (1973) Ibid. 68, 475–79.Google Scholar
Sibson, R. H., Moore, J. M., and Rankin, A. H. (1975) J. geol. Soc. Lond. 131, 653–9.CrossRefGoogle Scholar
Sivaprakash, C. (1982) Scott. J. Geol. 18, 109–24.CrossRefGoogle Scholar
Solomon, M., and Walshe, J. L. (1979) Econ. Geol. 74, 797813.CrossRefGoogle Scholar
Stumpfl, E. F. (1979) Mineral. Deposita, 14, 207–17.CrossRefGoogle Scholar
Sturt, B. A. (1961) J. geol. Soc. Lond. 117, 131–56.CrossRefGoogle Scholar
Styrt, M. M., Brackmann, A. J., Holland, H. D., Clark, B. C. Pisutha-Arnond, V., Eldridge, C. S., and Ohmoto, H. (1981) Earth Planet. Sci. Lett. 53, 382–90.CrossRefGoogle Scholar
Sweatman, T. R., and Long, J. V. P. (1969) J. Petrol. 10, 332–79.CrossRefGoogle Scholar
Swenson, D. H., Laux, S. J., Bums, A. R., Perley, P. C. and Boast, A. M. (1981) Trans. Inst. Mining Metall. B, 90, 57.Google Scholar
Turner, J. S., and Gustafson, L. B. (1978) Econ. Geol. 73, 1082–100.CrossRefGoogle Scholar
Urabe, T. (1974) In Geology of Kuroko Deposits. (Ishihara, S. et al., eds.), Min. Geol., Tokyo, Spec. Issue no. 6, 377–84.Google Scholar
Wells, P. R. A. (1979) J. geol. Soc. Lond. 136, 663–71.CrossRefGoogle Scholar
Wells, P. R. A.and Richardson S. W. (1979) In The Caledonides of the British Isles—reviewed (Harris, A. L. et al., eds.), Geol. Soc. Lond. 339–44.Google Scholar
Wiggins, L. B., and Craig, J. R. (1980) Econ. Geol. 75, 742–51.CrossRefGoogle Scholar
Willan, R. C. R. (1980) Nor. geol. Unders. 300, 241–58.Google Scholar
Willan, R. C. R. (1981) In Correlation of Caledonian stratabound sulphides, excursion guide (Hall, A. J. and Gallagher, M. J., eds.), Glasgow 1–2 May 1981.Google Scholar
Willan, R. C. R. and Coleman, M. C. (1981) Inst. Geol. Sci. Stable Isotope Rep. No. 60.Google Scholar