Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T01:30:05.062Z Has data issue: false hasContentIssue false

The structural behaviour of the nepheline family: (1) Sr and Ba aluminates (MAl2O4)

Published online by Cambridge University Press:  05 July 2018

C. M. B. Henderson
Affiliation:
Department of Geology, The University, Manchester M 13 9PL
D. Taylor
Affiliation:
Department of Geology, The University, Manchester M 13 9PL

Abstract

The structural relations of solid solutions in the series (Sr1−xBax)Al2O4 were studied using room- and high-temperature X-ray methods, infra-red spectroscopy, and DTA. At room temperature, SrAl2O4 and solid solutions with x up to 0.31 are monoclinic, between x = 0.31 and 0.43 monoclinic and hexagonal forms coexist, and between x = 0.43 and 1.0 only hexagonal forms occur. On heating, a member of the monoclinic series of solid solutions transforms to hexagonal symmetry over a range of temperature within which both monoclinic and hexagonal forms coexist. The proportion of the hexagonal form increases instantaneously as the temperature is raised. The transformation temperature decreases with increasing BaAl2O4 in solid solution and, in addition, the temperature width of the region of coexistence is markedly enlarged. SrAl2O4 transforms over the range 665–705 °C and (Sr0.7Ba0.3)Al2O4 over 170–405 °C. The DTA trace for SrAl2O4 shows a peak at 677 °C. On cooling, the transformations show hysteresis of 15 to 25 °C.

The coexisting monoclinic and hexagonal forms are believed to be isochemical, and discontinuities in cell parameters occur within the region of coexistence both in the compositional series at room temperature and in the elevated temperature transformation experiments. The low-to-high transformation is accompanied by a volume change of −0.2 to −0.3 %, and is believed to be first-order displacive with additional characteristics similar to those of martensitic transformations.

The thermal expansion behaviour of structures in the (Sr,Ba)Al2O4, series indicates that two tilt systems are operative: co-operative rotation of tetrahedra about the c-axis, and tilting of tetrahedra relative to the 0001 plane.

The results for the (Sr,Ba)Al2O4 series are shown to be invaluable in reinterpreting the structural behaviour of members of the nepheline and leucite groups of minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: 15 Leigh Road, Congleton, Cheshire CW12 2EG.

References

Ackerman, R. J., and Sorrell, C. A. (1970) High Temp. Sci. 2, 119 30.Google Scholar
Carmichael, I. S. E. (1967) Contrib. Mineral. Petrol. 15, 24-66.CrossRefGoogle Scholar
Cohen, L. H., and Klement, W. Jr., (1976) Mineral. Mag. 40, 487-92.CrossRefGoogle Scholar
D'Amour, H., Denner, W., and Schulz, H. (1979) Acta Crystallogr. B35, 550-5.CrossRefGoogle Scholar
Dempsey, M. J., and Taylor, D. (1980) Phys. Chem. Minerals, 6, 197-208.CrossRefGoogle Scholar
Dinichert, P. (1944) Helv. Phys. Acta, 15, 46275.Google Scholar
Do Dinh, C., and Bertaut, E.-F. (1965) Bull. Soc. ft. Mineral. Crystallogr. 88, 413-16.Google Scholar
Dollase, W. A. (1970) Z. Kristallogr. 132, 2744.CrossRefGoogle Scholar
Dougill, M. W. (1957) Nature, 180, 292-3.CrossRefGoogle Scholar
Ferry, J. M., and Blencoe, J. G. (1978) Am. Mineral. 63, 1225-40.Google Scholar
Foreman, N., and Peacor, D. R. (1970) Z. Kristallogr. 132, 4570.CrossRefGoogle Scholar
Gibbs, R. E. (1927) Proc. R. Soc. A 311, 35168.Google Scholar
Hanic, F., Chemekova, T. Yu., and Majling, J. (1979) J. Appl. CrystaUogr. 12, 243.CrossRefGoogle Scholar
Hazen, R. M. (1977) Phys. Chem. Minerals, 1, 83-94.CrossRefGoogle Scholar
Henderson, A. P. (1978) Unpubl. Ph.D. thesis, University of Aberdeen.Google Scholar
Henderson, C. M. B. (1981) Progr. Exp. Pert. (N.E.R.C.), 5, 50-4.Google Scholar
Henderson, C. M. B. and Roux, J. (1976) Ibid. 3, 60-9.Google Scholar
Henderson, C. M. B. and Roux, J. (1977) Contrib. Mineral. Petrol. 61, 279-98.CrossRefGoogle Scholar
Henderson, C. M. B. and Taylor, D. (1975) Trans. J. Br. Ceram. Soc. 74, 55-7.Google Scholar
Henderson, C. M. B. and Taylor, D. (1977) Spectrochim. Acta, 33A, 283-90.CrossRefGoogle Scholar
Henderson, C. M. B. and Taylor, D. (1978) Phys. Chem. Minerals 2, 337-47.CrossRefGoogle Scholar
Henderson, C. M. B. and Thompson, A. B. (1980) Am. Mineral. 65, 970-80.Google Scholar
Henning, O. (1968) Wiss. Z. Hochsch. Architekt. Bauw. Weimar, 15, 315-18.Google Scholar
Hirao, K., Soga, N., and Kunugi, M. (1976) J. Phys. Chem. 80, 1612-16.CrossRefGoogle Scholar
Hörkner, W., and Müller-Buschbaum, Hk. (1976) J. Inorg. Nucl. Chem. 38, 983-4.CrossRefGoogle Scholar
Hörkner, W., and Müller-Buschbaum, Hk. (1979) Z. Anorg. Allg. Chem. 451, 40-4.CrossRefGoogle Scholar
Ito, S., Banno, S., Suzuki, K., and Inagaki, M. (1977a) Z. Phys. Chem. 105, 1738.CrossRefGoogle Scholar
Ito, S., Banno, S., Suzuki, K., and Inagaki, M. (1977b) Ibid. 107, 53-6.Google Scholar
Kay, H. F., and Vousden, P. (1949) Phil. Mag. 7, 1019-40.CrossRefGoogle Scholar
Kelley, K. K. (1960) U.S. Bureau Mines, 584, 232 pp.Google Scholar
Kihara, K. (1978) Z. KristaUogr. 148, 237-53.CrossRefGoogle Scholar
Kobayashi, J., Uesu, Y., Mizutani, I., and Enomoto, Y. (1970) Phys. Star. Solidi (a), 3, 63-9.CrossRefGoogle Scholar
Kolesova, V. A. (1961) Opt. Spectrosc. 10, 414-17.Google Scholar
Leadbetter, A. J., and Wright, A. F. (1976) Phil. Mag. 31, 105-12.CrossRefGoogle Scholar
Levien, L., Prewitt, C. T., and Weidner, D. J. (1980) Am. Mineral. 65, 920-30.Google Scholar
Martin, R. F., and Lagache, M. (1975) Can. Mineral. 13, 275-81.Google Scholar
Megaw, H. D. (1947) Proc. Roy. Soc. A 189, 261-83.Google Scholar
Megaw, H. D. (1973) Crystal structures: a working approach. Philadelphia: W. B. Saunders Co. Google Scholar
Oehlschlegel, G., Kockel, A., and Biedl, A. (1974) Glastech. Ber. 47, 31-41.Google Scholar
Pankratz, L. B. (1968) Rept. Invest. U.S. Bur. Mines, 7073, 8 pp.Google Scholar
Parker, J. M., and McConnell, J. D. C. (1971) Nature, 234, 178-9.CrossRefGoogle Scholar
Peacor, D. R. (1968) Z. Kristallogr. 127, 213-24.CrossRefGoogle Scholar
Perrotta, A. J. (1965). Ph.D. thesis, University of Chicago.Google Scholar
Perrotta, A. J. and Smith, J. V. (1965) Mineral. Mag. 35, 588-95.Google Scholar
Perrotta, A. J. and Smith, J. V. (1968) Bull. Soc.fr. Mineral. Crystallogr. 91, 85-7.Google Scholar
Sadanaga, R., and Ozawa, T. (1968) Mineral. J. (Japan) 5, 321-33.CrossRefGoogle Scholar
Sahama, Th. G. (1962) J. Petrol. 3, 65-81.CrossRefGoogle Scholar
Schroeder, R. A., and Lyons, L. L. (1966) J. lnorg. Nucl. Chem. 28, 1155-63.CrossRefGoogle Scholar
Schulze, A. R., and Miiller-Buschbaum, Hk. (1981) Z. Anorg. Allg. Chem. 81, 205-10.CrossRefGoogle Scholar
Simmons, W. B., and Peacor, D. R. (1972) Am. Mineral. 57, 1711-19.Google Scholar
Smith, J. V., and Tuttle, O. F. (1957) Am. J. Sci. 255, 282-305.CrossRefGoogle Scholar
Taylor, D. (1972) Mineral. Mag. 38, 593-604.CrossRefGoogle Scholar
Taylor, D. and Henderson, C. M. B. (1968) Am. Mineral. 53, 1476-89.Google Scholar
Uchikawa, H., and Tsukiyama, K. (1966) J. Ceram. Soc. Japan, 74, 13-20.Google Scholar
Weiderhorn, S. M. (1974) In Fracture Mechanics of Ceramics, vol. 2. (Bradt, R. C. et al., eds.). New York: Plenum Press.Google Scholar
Wolten, G. M. (1963) J. Am. Ceram. Soc. 46, 418-22.CrossRefGoogle Scholar