Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T18:23:53.790Z Has data issue: false hasContentIssue false

The structure of P21/c (Ca0.2Co0.8)CoSi2O6 pyroxene and the C2/cP21/c phase transition in natural and synthetic Ca–Mg–Fe2+ pyroxenes

Published online by Cambridge University Press:  28 February 2018

Mario Tribaudino*
Affiliation:
Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 157/A, 43124 Parma, Italy
Luciana Mantovani
Affiliation:
Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 157/A, 43124 Parma, Italy
Francesco Mezzadri
Affiliation:
Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 157/A, 43124 Parma, Italy
Gianluca Calestani
Affiliation:
Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 157/A, 43124 Parma, Italy
Geoffrey Bromiley
Affiliation:
School of GeoSciences, University of Edinburgh, Grant Institute, West Mains Road, Edinburgh EH9 3JW, UK

Abstract

A P21/c synthetic (Ca0.2Co0.8)CoSi2O6 pyroxene was synthesized by slow cooling from melt at high pressure. Single crystals suitable for X-ray diffraction were obtained and refined. The results were compared to those of C2/c pyroxenes along the series CaCoSi2O6–Co2Si2O6. Strong similarities in the crystal chemical mechanism of the transition with the synthetic CaFeSi2O6–Fe2Si2O6 and CaMgSi2O6–Mg2Si2O6 pyroxenes, both at an average and local level are apparent.

The results, examined together with two new refinements of pigeonite in the ureilites ALHA77257 and RKPA80239 and with a set of natural and synthetic C2/c and P21/c pyroxenes, show that the average cation radius in the M2 site is the driving force for the phase transition from C2/c to P21/c. The longest M2–O3 distances and the O3–O3–O3 angles follow the same trend, dictated only by the ionic radius in M2, in either synthetic or natural pyroxenes, regardless of the ionic radius of the M1 cations. The transition also affects the difference between bridging and non-bridging oxygen atoms and the extent of tetrahedral deformation, whereas the M1–O, M2–O1 and M2–O2 distances are unaffected by the transition and are determined only by the ionic radius of the bonding cation. The structural changes between the ionic radius and the high temperature C2/c and P21/c transitions are similar, and different to the high-pressure transition.

Analysis of natural and synthetic pyroxenes shows that the transition with composition occurs in strain free pyroxenes for a critical radius of 0.85 Å. Increasing strain stabilizes the P21/c structure to a higher temperature and larger cation radius.

Finally, our results show that the monoclinic P21/c Ca-poor clinopyroxene, i.e the mineral pigeonite, crystallizes only at conditions where the structure is HT-C2/c, and changes to the P21/c symmetry during cooling.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: David Hibbs

References

Alvaro, M., Nestola, F., Boffa Ballaran, T., Cámara, F., Domeneghetti, M.C. and Tazzoli, V. (2010) High-pressure phase transition of a natural pigeonite. American Mineralogist, 95, 300311.CrossRefGoogle Scholar
Alvaro, M., Cámara, F., Domeneghetti, M.C., Nestola, F. and Tazzoli, V. (2011) HT P21/cC2/c phase transition and kinetics of Fe2+–Mg order–disorder of an Fe-poor pigeonite: implications for the cooling history of ureilites. Contributions to Mineralogy and Petrology, 162, 599613.Google Scholar
Arlt, T. and Angel, R.J. (2000) Displacive phase transitions in C-centred clinopyroxenes: Spodumene, LiScSi2O6 and ZnSiO3. Physics and Chemistry of Minerals, 27, 719731.CrossRefGoogle Scholar
Belokoneva, E.L., Khisina, N.R., Petushkova, L.V. and Belov, N.V. (1981) X-ray structural analysis of two-phase clinopyroxene from Luna-24 regolith. Soviet Physics Doklady, 26, 455.Google Scholar
Benna, P., Tribaudino, Μ., Zanini, G. and Bruno, E. (1990) The crystal structure of Ca0.8Mg1.2Si2O6 clinopyroxene (Di80En20) at Τ = –130°, 25°, 400° and 700°C. Zeitschrift für Kristallographie, 192, 183200.Google Scholar
Berkley, J.L., Taylor, G.J., Keil, K. and Prinz, M. (1980) The nature and origin of ureilites. Geochimica et Cosmochimica Acta, 44, 15791597.CrossRefGoogle Scholar
Boyd, F.R. and Schairer, J.F. (1964) The System MgSiO3–CaMgSi2O6. Journal of Petrology, 5, 275309.Google Scholar
Brown, G.E., Prewitt, C.T., Papike, J.J. and Sueno, S. (1972) A comparison of the structures of low and high pigeonite. Journal of Geophysical Research, 77, 57785789.Google Scholar
Bruno, E., Carbonin, S. and Molin, G. (1982) Crystal structures of Ca-rich clinopyroxenes on the CaMgSi2O6–Mg2Si2O6 join. Tschermaks Mineralogische und Petrographische Mitteilungen, 29, 223240.Google Scholar
Burnham, C.W. (1967) Ferrosilite. Year Book – Carnegie Institution of Washington, 65, 285–29.Google Scholar
Cámara, F., Carpenter, M.A., Domeneghetti, M.C. and Tazzoli, V. (2003) Coupling between non-convergent ordering and transition temperature in the C2/cP21/c phase transition in pigeonite. American Mineralogist, 88, 11151128.Google Scholar
Cameron, M. and Papike, J.J. (1981) Structural and chemical variations in pyroxenes. American Mineralogist, 66, 150.Google Scholar
Cameron, M., Sueno, S., Prewitt, C.T. and Papike, J.J. (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. American Mineralogist, 58, 594618.Google Scholar
Clark, J.R., Ross, M. and Appleman, D.E. (1971) Crystal chemistry of a lunar pigeonite. American Mineralogist, 56, 888908.Google Scholar
Downs, R.T. (2003) Topology of the pyroxenes as a function of temperature, pressure, and composition as determined from the procrystal electron density. American Mineralogist, 88, 556566.Google Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.Google Scholar
Frey, F., Weidner, E., Pedersen, B., Boysen, H., Burghammer, M. and Hoelzel, M. (2010) Pyroxene from martian meteorite NWA856: Structural investigations by X-ray and neutron diffraction. Zeitschrift für Kristallographie, 225, 287297.Google Scholar
Ghose, S., Wan, C. and Okamura, F. (1987) Crystal-structures of CaNiSi2O6 and CaCoSi2O6 and some crystal-chemical relations in C2/c clinopyroxenes. American Mineralogist, 72, 375381.Google Scholar
Gori, C., Tribaudino, M., Mantovani, L., Delmonte, D., Mezzadri, F., Gilioli, E. and Calestani, G. (2015) Ca-Zn solid solutions in C2/c pyroxenes: synthesis, crystal structure, and implications for Zn geochemistry. American Mineralogist, 100, 22092218.Google Scholar
Lindsley, D.H. (1983) Pyroxene thermometry. American Mineralogist, 68, 477493.Google Scholar
Lindsley, D.H. and Andersen, D.J. (1983) A two-pyroxene thermometer. Journal of Geophysical Research: Solid Earth, 88, 887906.Google Scholar
Lufaso, M.W. and Woodward, P.M. (2004) Jahn–Teller distortions, cation ordering and octahedral tilting in perovskites. Acta Crystallographica Section B: Structural Science, 60, 1020.CrossRefGoogle ScholarPubMed
Mantovani, L., Tribaudino, M., Mezzadri, F., Calestani, G. and Bromiley, G. (2013) The structure of (Ca, Co)CoSi2O6 pyroxenes and the Ca-M2+ substitution in (Ca, M2+) M2+ Si2O6 pyroxenes (M2+= Co, Fe, Mg). American Mineralogist, 98, 12411252.CrossRefGoogle Scholar
Mantovani, L., Tribaudino, M., Bertoni, G., Salviati, G. and Bromiley, G. (2014) Solid solutions and phase transitions in (Ca, M2+) M2+ Si2O6 pyroxenes (M2+= Co, Fe, Mg). American Mineralogist, 99, 704711.Google Scholar
Momma, K. and Izumi, F. (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.CrossRefGoogle Scholar
Morimoto, N. and Güven, N. (1970) Refinement of the crystal structure of pigeonite. American Mineralogist, 55, 11951209.Google Scholar
Nestola, F., Tribaudino, M. and Boffa Ballaran, T. (2004) High pressure behavior, transformation and crystal structure of synthetic iron-free pigeonite. American Mineralogist, 89, 189196.Google Scholar
Ohashi, Y. (1984) Polysynthetically-twinned structures of enstatite and wollastonite. Physics and Chemistry of Minerals, 10, 217229.CrossRefGoogle Scholar
Ohashi, Y. and Finger, L.W. (1973) Lunar pigeonite crystal structure of primitive-cell domains. American Mineralogist, 58, 11061116.Google Scholar
Ohashi, Y. and Finger, L.W. (1976) The effect of Ca substitution on the structure of clinoenstatite. Year Book – Carnegie Institution of Washington, 75, 743746.Google Scholar
Ohashi, Y., Burnham, C.W. and Finger, L.W. (1975) The effect of Ca-Fe substitution on the clinopyroxene crystal structure. American Mineralogist, 60, 423434.Google Scholar
Pannhorst, W. (1984) High temperature crystal structure refinements of low-clinoenstatite up to 700°C. Neues Jahrbuch für Mineralogie Abhandlungen, 150, 219228.Google Scholar
Pasqual, D., Molin, G. and Tribaudino, M. (2000) Single-crystal thermometric calibration of Fe-Mg order-disorder in pigeonites. American Mineralogist, 85, 953962.CrossRefGoogle Scholar
Redhammer, G.J. and Roth, G. (2004) Structural variation and crystal chemistry of LiMe3+ Si2O6 clinopyroxenes Me3+= Al, Ga, Cr, V, Fe, Sc and In. Zeitschrift für Kristallographie–Crystalline Materials, 219, 278294.Google Scholar
Redhammer, G.J., Cámara, F., Alvaro, M., Nestola, F., Tippelt, G., Prinz, S., Simons, J., Roth, G. and Amthauer, G. (2010). Thermal expansion and high-temperature P21/cC2/c phase transition in clinopyroxene-type LiFeGe2O6 and comparison to NaFe(Si,Ge)2O6. Physics and Chemistry of Minerals, 37, 685704.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.Google Scholar
Sheldrick, G.M. (1996) SADABS. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2009) TWINABS. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (1997) SHELXL-97, program for crystal structure solution. University of Göttingen, Germany.Google Scholar
Shimobayashi, N. and Kitamura, M. (1991) Phase transition in Ca-poor clinopyroxenes: a high temperature transmission electron microscopic study. Physics and Chemistry of Minerals, 18, 153160.CrossRefGoogle Scholar
Takeda, H. (1972) Structural studies of rim augite and core pigeonite from lunar rock 12052. Earth and Planetary Science Letters, 15, 6571.Google Scholar
Takeda, H. (1987) Mineralogy of Antarctic ureilites and a working hypothesis for their origin and evolution. Earth and Planetary Science Letters, 81, 358370.Google Scholar
Tribaudino, M. (2000) A transmission electron microscope investigation of the C2/cP21/c phase transition in clinopyroxenes. American Mineralogist, 85, 707715.CrossRefGoogle Scholar
Tribaudino, M. (2006) Microtextures and crystal chemistry of pigeonite in the ureilites ALHA77257, RKPA80239, Y-791538, and ALHA81101. Meteoritics and Planetary Science, 41, 979988.Google Scholar
Tribaudino, M. and Nestola, F. (2002) Average and local structure in P21/c pyroxenes along the join diopside-enstatite (CaMgSi2O6–Mg2Si2O6). European Journal of Mineralogy, 14, 549555.Google Scholar
Tribaudino, M., Benna, P. and Bruno, E. (1989) Average structure and M2 site configurations in C2/c clinopyroxenes along the Di-En join. Contributions to Mineralogy and Petrology, 103, 452456.Google Scholar
Tribaudino, M., Nestola, F., Cámara, F. and Domeneghetti, M.C. (2002) The high-temperature P21/c-C2/c phase transition in Fe-free pyroxene (Ca0.15Mg1.85Si2O6): structural and thermodynamic behavior. American Mineralogist, 87, 648657.Google Scholar
Tribaudino, M., Pasqual, D., Molin, G. and Secco, L. (2003) Microtextures and crystal chemistry in P21/c pigeonites. Mineralogy and Petrology, 77, 161176.Google Scholar
Tribaudino, M., Mantovani, L., Bersani, D. and Lottici, P.P. (2012) Raman spectroscopy of (Ca,Mg)MgSi2O6 clinopyroxenes. American Mineralogist, 97, 13391347.Google Scholar
Weinbruch, S., Styrsa, V. and Müller, W.F. (2003) Exsolution and coarsening in iron-free clinopyroxene during isothermal annealing. Geochimica et Cosmochimica Acta, 67, 50715082.Google Scholar
Zhang, J.S., Reynard, B., Montagnac, G. and Bass, J. (2013) Pressure-induced Pbca-P21/c phase transition of natural orthoenstatite: compositional effect and its geophysical implications. American Mineralogist, 98, 986992.Google Scholar
Zhang, J.S., Reynard, B., Montagnac, G. and Bass, J. (2014) Pressure-induced PbcaP21/c phase transition of natural orthoenstatite: The effect of high temperature and its geophysical implications. Physics of the Earth and Planetary Interiors, 228, 150159.Google Scholar
Supplementary material: File

Tribaudino et al. supplementary material

Tribaudino et al. supplementary material

Download Tribaudino et al. supplementary material(File)
File 152.6 KB