Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T11:34:01.868Z Has data issue: false hasContentIssue false

Tavagnascoite, Bi4O4(SO4)(OH)2, a new oxyhydroxy bismuth sulfate related to klebelsbergite

Published online by Cambridge University Press:  02 January 2018

Luca Bindi*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy
Cristian Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
Bruno Martini
Affiliation:
Associazione Micro-mineralogica Italiana, Via Gioconda 3, I-26100 Cremona, Italy
Adrio Salvetti
Affiliation:
Associazione Micro-mineralogica Italiana, Via Gioconda 3, I-26100 Cremona, Italy
Giovanni Dalla Fontana
Affiliation:
Associazione Micro-mineralogica Italiana, Via Gioconda 3, I-26100 Cremona, Italy
Massimo Taronna
Affiliation:
Associazione Micro-mineralogica Italiana, Via Gioconda 3, I-26100 Cremona, Italy
Marco E. Ciriotti
Affiliation:
Associazione Micro-mineralogica Italiana, Via Gioconda 3, I-26100 Cremona, Italy
*

Abstract

The new mineral tavagnascoite, Bi4O4 (SO4)(OH)2, was discovered in the Pb-Bi-Zn-As-Fe-Cu ore district of Tavagnasco, Turin, Piedmont, Italy. It occurs as blocky, colourless crystals, up to 40 μm in size, with a silky lustre. In the specimen studied, tavagnascoite is associated with other uncharacterized secondary Bi-minerals originating from the alteration of a bismuthinite ± Bi-sulfosalt assemblage. Electron microprobe analyses gave (average of three spot analyses, wt.%) Bi2O3 85.32, Sb2O3 0.58, PbO 2.18, SO3 8.46, H2Ocalc 1.77, sum 98.31. On the basis of 10 O apfu, the chemical formula is (Bi3.74Pb0.10Sb0.04)∑ = 3.88O3.68 (SO4)1.08(OH)2, with rounding errors. Main calculated diffraction lines are [d in Å (relative intensity) hkl] 6.39 (29) 012, 4.95 (19) 111,4.019(32)121,3.604(28)014 and 3.213(100)123. Unit-cell parameters are a = 5.831(1), b = 11.925(2), c = 15.123(1) Å, V = 1051.6(3) Å3, Z = 4, space group Pca21. The crystal structure was solved and refined from single-crystal X-ray diffraction data to R 1 = 0.037 on the basis of 1269 observed reflections. It consists of Bi–O polyhedra and SO4 tetrahedra. Bismuth polyhedra are connected each to other to form Bi–O sheets parallel to (001). Successive sheets are linked together by SO4 groups and hydrogen bonds. Tavagnascoite is the Bi-analogue of klebelsbergite, Sb4O4(SO4)(OH)2, and it is the fifth natural known bismuth sulfate without additional cations. The mineral and its name have been approved by the IMA CNMNC (2014-099).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aurivillius, B. (1988) Pyrolysis products of Bi,(SO4)3. II. Crystal structure of Bi2O(SO4)2 . Ada Chemica Scandinavica, A42, 92110.Google Scholar
Bindi, L., Martini, B., Salvetti, A., Dalla Fontana, G., Taronna, M., Biagioni, C. and Ciriotti, M.E. (2015) Tavagnascoite, IMA 2014-099. CNMNC Newsletter No. 24, April 2015, page 250. Mineralogical Magazine, 79, 247251.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Ada Crystallographica, B47, 192197.Google Scholar
Capitani, G.C., Catelani, T, Gentile, P., Lucotti, A. and Zema, M. (2013) Cannonite, [Bi2O(SO4)(OH)2] from Alfenza (Crodo, Italy): crystal structure and morphology. Mineralogical Magazine, 11, 3067—3079 Google Scholar
Capitani, G.C., Mugnaioli, E., Rius, J., Gentile, P., Catelani, T, Lucotti, A. and Kolb, U. (2014) The Bi sulfates from the Alfenza Mine, Crodo, Italy: an automatic electron diffraction tomography (ADT) study. American Mineralogist, 99, 500510.CrossRefGoogle Scholar
Castro, A., Millan, P. and Enjalbert, R. (1995) Structural evolution of the Aurivillius framework in the solid solution Bi2WO6—Sb2WO6 . Materials Research Bulletin, 30, 871882.CrossRefGoogle Scholar
Demartin, K, Gramaccioli, CM., Campostrini, I. and Pilati, T. (2010) Aiolosite, Na2(Na2Bi)(SO4)3Cl, a new sulfate isotypic to apatite from La Fossa Crater, Vulcano, Aeolian Islands, Italy. American Mineralogist, 95, 382385.CrossRefGoogle Scholar
Demartin, E, Gramaccioli, C.M. and Castellano, F. (2014) Campostriniite, IMA 2013-086a. CNMNC Newsletter No. 22, October 2014, page 1242. Mineralogical Magazine, 78, 12411248.Google Scholar
Deschanvres, A., Gallay, J., Hunout, J.-M., Thiault, M.-T. and Victor, C (1970) Preparation de quelques composes du plomb appurtenant aux phases XI, X1X2 de Sillen. Comptes rendus de VAcademie des Sciences, C270, 696699.Google Scholar
Dihlstrom, K. (1938) Uber den bau des wahren anti-montetroxyds und des damit isomorphen stibiotanta-lits, SbTaO4 . Zeitschrift fur anorganische und allgemeine Chemie, 239, 57—64.CrossRefGoogle Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valenc. vs bond length in O-O hydrogen bonds. Ada Crystallographica, B44, 341344.Google Scholar
Galliski, M.A., Marquez-Zavalia, M.F., Cooper, M.A., Cerny, P. and Hawthorne, EC (2001) Bismutotantalite from Northwestern Argentina: description and crystal structure. The Canadian Mineralogist, 39, 103—110.CrossRefGoogle Scholar
Galy, J., Meunier, G., Andersson, S. and Astrom, A. (1975) Stereochimie de elements comportants des paires non liees: Ge(II), As(III), Se(IV), Br(V), Sn(II), Sb(III), Te(IV), I(V), Xe(VI), T1(I), Pb(II) et Bi(III) (oxides, fluorures et oxyfluorures). Journal of Solid State Chemistry, 13, 142159.CrossRefGoogle Scholar
Garavelli, A., Pinto, D., Mitolo, D. and Bindi, L. (2014) Leguernite, Bi1267O14(SO4)5, a new Bi oxysulfate from the fumarole deposit of La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 78, 16291645.CrossRefGoogle Scholar
Gillberg, M. (1960) Perite, a new oxyhalide mineral from Langban, Sweden. Arkiv for Mineralogi och Geologi, 2, 565570.Google Scholar
Giuseppetti, G. and Tadini, C (1973) Riesame della struttura cristallina della nadorite: PbSbO2Cl. Periodico di Mineralogia, 42, 335—345.Google Scholar
Jervis, G. (1873) I tesori sotterranei dell'Italia, Vol. 1 — Le Alpi [269 Tavagnasco], Loescher, Torin Italy.Google Scholar
Ketterer, J. and Kramer, V (1985) Structural character-ization of the synthetic perites PbBiO2X, X = I, Br, Cl. Materials Research Bulletin, 20, 10311036.CrossRefGoogle Scholar
Knight, K.S. (1992) The crystal structure of russellite; a re-determination using neutron powder diffraction of synthetic Bi2WOg. Mineralogical Magazine, 56, 399–09.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1996) Powder Cell - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Krivovichev, S.V. (2012) Derivation of bond-valence parameters for some cation-oxygen pairs on the basis of empirical relationships betwee. r0 and b. Zeitschrift fur Kristallographie, 227, 575579.Google Scholar
Liermann, H.-R, Isachsen, C, Altenberger, U. and Oberhansli, R. (2002) Behavior of zircon during high-pressure, low-temperature metamorphism: Case study from the Internal Unit of the Sesia Zone (Western Italian Alps). European Journal of \lnh ml.■,'!. 14.l ∼lCrossRefGoogle Scholar
Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications. The Canadian Mineralogist, 17, 71—76.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mastrangelo, E, Natale, P. and Zucchetti, S. (1983) Quadro giacimentologico e metallogenico delle Alpi Occidentali italiane. Bollettino dellAssociazione Mineraria Subalpina, 20, 203248.Google Scholar
Matteucci, E. and Zucchetti, S. (1962) Notizie preliminari sui depositi filoniani a solfurati misti della zona di Tavagnasco (Ivrea). Rendiconti della Societd Italiana di Mineralogia e Petrologia, 18, 103—106.Google Scholar
Menchetti, S. and Sabelli, C (1980) The crystal structure of'klebelsbergite. American Mineralogist, 65, 931935.Google Scholar
Mills, S.J., Hatert, E, Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposal. European Journal of Mineralogy, 21, 1073—1080.CrossRefGoogle Scholar
Nakai, I. and Appleman, D.E. (1980) Klebelsbergite, Sb4O4(OH)2SO4: redefinition and synthesis. American Mineralogist, 65, 499505.Google Scholar
Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis, RED. Oxford Diffraction Ltd, Abingdo UK.Google Scholar
Pinto, D., Garavelli, A. and Mitolo, D. (2014) Baliczunicite, Bi2O(SO4)2, a new fumarole mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 78, 10431055.CrossRefGoogle Scholar
Popova, V.I., Popov, V.A., Rudashevskiy, S.E., Glavatskikh, VO., Polyakov, A.E. and Bushsmakin, A.F. (1987) Nabokoite, Cu7TeO4(SO4)5-KCl and atlasovite, CuFe3+Bi3+04(S04)5-KCl. New minerals of volcanic exhalations. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 116, 358367.Google Scholar
Rogner, P. (2005) Riomarinait, ein neues Wismutmineral vom Abbau Falcacci, Rio Marina, Elba (Italien). Aufschluss, 56, 5360.Google Scholar
Roper, A.J., Leverett, P., Murphy, T.D. and Williams, P.A. (2015) Klebelsbergite, Sb4O4SO4(OH)2: stability relationships, formation in Nature, and refinement of its structure. American Mineralogist, 100, 602607.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographica, A32, 751—767.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Ada Crystallographica, A64, 112122.Google Scholar
Siidra, O.I., Vergasova, L.P., Krivovichev, S.Y., Kretser, Y.L., Zaitsev, A.N. and Filatov, S.K. (2014) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka Peninsula, Russia I. Markhininite, TlBi(SO4)2 . Mineralogical Magazine, 78, 16871698.CrossRefGoogle Scholar
Stanley, C.J., Roberts, A.C., Harris, D.C., Criddle, A.J. and Szymanski, IT. (1992) Cannonite, Bi2O (OH)2SO4, a new mineral from Marysvale, Utah, USA. Mineralogical Magazine, 56 605–609.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H.(2001) Strunz Mineralogical Tables — Structural Mineral Classification System., 9th Edition. E. Schweizerbart-Verlag, Stuttgart Germany.Google Scholar
Walenta, K. (1995) Tungstibite, Sb2O3-WO3, a new mineral from the Clara mine near Oberwolfach in the central Black Forest. Chemie der Erde, 55, 217224.Google Scholar
Wilson, A.J.C.. (editor) (1992) International Tables for X-ray Crystallography Volume C Mathematical, Physical and Chemical Tables., Kluwer Academic Publishers, Dordrecht The Netherlands.Google Scholar
Zubkova, N.Y., Pushcharovsky, D.Y., Giester, G., Smolin, A.S., Tillmanns, E., Brandstatter, F, Hammer, Y, Peretyazhko, I.S., Sapozhnikov, A.N. and Kashaev, A.A. (2002) Bismutocolumbite, Bi(Nb0 79Tao 21)O4, stibiocolumbite, Sb(Nb0 67Tao 33)O4, and their structural relation to other ABO4 minerals with stibiotanta-lite (SbTaO4) structure. Neues Jahrbuch fur Mineralogie, Monatshefte, 145—159.Google Scholar