Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T19:59:34.780Z Has data issue: false hasContentIssue false

Adsorption of actinides within speleothems

Published online by Cambridge University Press:  02 January 2018

P. Sengupta*
Affiliation:
Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
J. Sanwal
Affiliation:
Geodynamics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
N. L. Dudwadkar
Affiliation:
Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
S. C. Tripathi
Affiliation:
Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
P. M. Gandhi
Affiliation:
Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

Abstract

Stalagmites and stalactites, as observed within natural caves, may develop inside geological repositories during constructional and post-operational periods. It is therefore important to understand actinide sorption within such materials. Towards this, experimental studies were carried out with 233U, 238Np (VI), 238Np (IV), 239Pu and 241Am radiotracers using natural speleothem samples collected from the Dharamjali cave of the Kumaon Lesser Himalayas, India. Petrological/mineralogical studies showed that natural speleothems have three general domains: (1) columnar calcite; (2) microcrystalline calcite; and (3) botryoidal aragonite – each with ferruginous materials. Results showed that all domains of speleothems can take up >99% actinides, irrespective of valence state and pH (1–6 range) of the solution. However, distribution coefficients were found to be at a maximum in aragonite for most of the actinides. Such data are very important for long-term performance and safety assessments of the deep geological repositories planned for the disposal of high-level nuclear wastes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, A., Mockler, N.J., Barnes, W.L. (1999) Fluorescence intensity variations of speleothem-forming goundwaters: implications for palaeoclime reconstruction. Water Resources Research, 35, 407413.CrossRefGoogle Scholar
Boles, J.R. (2004) Rapid growth of meter scale calcite speleothems in Mission Tunnel, Santa Brbara, CA. Pp. 353356.in: Water-Rock Interaction (R.B. Wanty and R.R. SealII, editors). Taylor and Francis Group, London.Google Scholar
Broughton, P.L. (1983) Environmental implications of competitive growth fabrics in stalactic carbonate. InternationalJournal of Speleology, 13, 3141.CrossRefGoogle Scholar
Burton, E.A. and Walter, L.M. (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control. Geology, 15, 111114.2.0.CO;2>CrossRefGoogle Scholar
Carroll, S.A. and Bruno, J. (1991) Mineral-solution interactions in the U(VI)-CO2-H2O system. Radiochimica Acta, 52-53, 187193.Google Scholar
Chitnis, R.T., Rajappan, S.V., Kumar, S.V. andNadkarni, M.N. (1979) Cation exchange separation of uranium and thorium. Report BARC-1003, Bhabha Atomic Research Centre, Mumbai.Google Scholar
Christ, C.L., Clark, J.R. and Evans, H.T. (1955) Crystal structure of rutherfordine, UO2CO3. Science, 121, 472–73.CrossRefGoogle ScholarPubMed
Curti, E. (1999) Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Applied Geochemistry, 14, 433445.CrossRefGoogle Scholar
Das, N., Sengupta, P., Roychowdhury, S., Sharma, G., Gawde, P.S., Arya, A., Kain, V., Kulkarni, U.D., Chakravartty, J.K. and Dey, G.K. (2012) Metallurgical characterizations of Fe-Cr-Ni-Zr base alloys developed for geological disposal of radioactive hulls. Journal of Nuclear Materials, 420, 559574.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the Rock Forming Minerals. John Wiley and Sons Inc, New York.Google Scholar
Donald, I.W. (2010) Waste Immobilization in Glass and Ceramic Based Hosts. Wiley and Sons, 493 Pp.CrossRefGoogle Scholar
Donald, I.W., Metcalfe, B.L. and Taylor, J.R.N.. (1997) Review: the immobilization of high level radioactive wastes using ceramics and glasses. Journal of Material Science, 32, 851887.CrossRefGoogle Scholar
Dutta, R.S., Yusufali, C., Paul, B., Majumdar, S., Sengupta, P., Mishra, R.K., Kaushik, C.P., Kshirsagar, R.J., Kulkarni, U.D. and Dey, G.K. (2013) Formation of diffusion barrier coating on superalloy 690 substrate and its stability in borosilicate melt at elevated temperature. Journal of Nuclear Materials, 432, 7277.CrossRefGoogle Scholar
Ebert, W.L., Bates, J.K., Buck, E.C., Gong, M. and Wolf, S.F. (1994) Disposition of actinides released from high level waste glass. Proceedingsofthe American Ceramic Society 96th Annual Meeting, Indianapolis, USA.Google Scholar
Ewing, R.C. (1999) Radioactivity and the 20th Century. Pp. 1—22.in: Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns and R.J. Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington DC.Google Scholar
Fairchild, I.J. and Baker, A. (2012) Speleothem Science: From Process to Past Environments. Wiley— Blackwell, 450 Pp.CrossRefGoogle Scholar
Genty, D. and Quinif, Y. (1996) Annually laminated sequences in the internal structure of some Belgian stalagmites — Importance for paleoclimatology.Journal of Sedimentary Research, 66, 275288.Google Scholar
Genty, D., Baker, A. and Vokal, B. (2001) Intra- and inter-annual growth rate of modern stalagmites. Chemical Geology, 176, 191212.CrossRefGoogle Scholar
Gimeno, M.J., Auque, L.F., Acero, P. and Gomez, J.B. (2014) Hydrogeochemical characterization and modeling of groundwater in a potential geological repository for spent nuclear fuel in crystalline rocks (Laxemar, Sweden). Applied Geochemistry, 45, 5071.CrossRefGoogle Scholar
Given, R.K. and Wilkinson, B.H. (1985) Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates. Journal of Sedimentary Research, 55, 109119.Google Scholar
Goswami, M., Sengupta, P., Sharma, K., Kumar, R., Shrikhande, V.K., Ferreira, J.M.F.. and Kothyial, G.P. (2007) Crystallization behavior of Li2O-ZnO-SiO2 glass ceramics system.Ceramics International, 33, 863867.CrossRefGoogle Scholar
Grover, V., Sengupta, P., Bhanumurthy, K., Tyagi, A.K. (2006) Electron Probe Microanalysis (EPMA) investigations in the CeO2—ThO2—ZrO2 system. Journal of Nuclear Materials, 350, 169172.CrossRefGoogle Scholar
Grover, V., Sengupta, P. and Tyagi, A.K. (2007) Sub-solidus phase relations in CeO2-YSZ and ThO2-YSZ systems: XRD, high-temperature XRD and EPMA studies. Materials Science Engineering B, 138, 246250.CrossRefGoogle Scholar
Grover, V., Banerji, A., Sengupta, P. and Tyagi, A.K. (2008) Raman, XRD and microscopic investigations on CeO2-Lu2O3 and CeO2-Sc2O3 systems: A sub- solidus phase evolution study. Journal of Solid State Chemistry, 181, 19301935.CrossRefGoogle Scholar
Grover, V., Cavan, S.V., Sengupta, P. and Tyagi, A.K. (2010) CeO2-YO1. 5-NdO1. 5 system: An extensive phase relation study. Journal of European Ceramic Society, 30, 31373143.CrossRefGoogle Scholar
Halder, R., Dutta, R.S., Sengupta, P., Samajdar, I. and Dey, G.K. (2014) Microstructural studies on Alloy 693. Journal of Nuclear Materials, 453, 91—97.CrossRefGoogle Scholar
Halder, R., Sengupta, P., Sudarsan, V., Ghosh, A., Ghosh, A., Bhukta, A., Sharma, G., Samajdar, I. and Dey, G.K. (2015) Photo luminescence study on irradiated yttria stabilized zirconia. Journal of Nuclear Materials, 456, 359368.CrossRefGoogle Scholar
Hench, L.L., Clark, D.E. and Campbell, 1 (1984) High level waste immobilization forms. Nuclear and Chemical Waste Management, 5, 149—173.CrossRefGoogle Scholar
Jafar, M., Sengupta, P., Achary, S.N. and Tyagi, A.K. (2014a) Structural and phase evolution studies in CaZrTi2O7 - Nd2Ti2O7 systems. Journal of the American Ceramic Society, 97, 609—616.CrossRefGoogle Scholar
Jafar, M., Sengupta, P., Achary, S.N. and Tyagi, A.K. (2014b) Phase evolution and Microstructural studies in CaZrTi2O7 (zirconolite)-Sm2Ti2O7 (pyrochlore) system. Journal of the European Ceramic Society, 34, 43734381.CrossRefGoogle Scholar
Kain, V., Sengupta, P., De, P.K. and Banerjee, S. (2005) Case reviews on the effect of micro structure on the corrosion behavior of austenitic alloys for processing and storage of nuclear waste. Metallurgical Materials Transactions A, 36A, 10751084.CrossRefGoogle Scholar
Kaushik, C.P., Mishra, R.K., Sengupta, P., Das, D., Kale, G.B. and Raj, K. (2006) Barium borosilicate glass: a potential matrix for immobilization of sulfate bearing high level radioactive waste. Journal of Nuclear Materials, 358, 129138.CrossRefGoogle Scholar
Keeney-Kennicutt, W.L. and Morse, J.W. (1984) The interaction of Np(V)O+2 with common mineral surfaces in dilute aqueous solutions and seawater. Marine Chemistry, 15, 133150.CrossRefGoogle Scholar
Kelly, S.D., Newville, M.G., Cheng, L., Kemner, K.M., Sutton, S.R., Fenter, P., Sturhio, N.C. and Spötl, C. (2003) Uranyl incorporation in natural calcite. Environmental Science & Technology, 37, 12841287.CrossRefGoogle Scholar
Kelly, S.D., Rasbury, E.T., Chattopadhyay, S., Krof, A.J. and Kemner, K.M. (2006) Evidence of a stable uranyl site in ancient organic-rich calcite. Environmental Science & Technology, 40, 22622268.CrossRefGoogle ScholarPubMed
Kim, C.W. and Day, D.E. (2003) Immobilization of Hanford Law in iron phosphate glasses. Journal of Non-Crystalline Solids, 331, 2031.CrossRefGoogle Scholar
Kitano, Y. and Oomori, T (1971) The coprecipitation of uranium with calcium carbonate. Journal of the Oceanographical Society of Japan, 27, 34—42.CrossRefGoogle Scholar
Kuczumow, A., Genty, D., Chevallier, P., Nowak, J., Florek, M. and Buczynska, A. (2005) X-ray and electron microprobe investigation of the speleothems from Godarville tunnel. X-ray Spectrometry, 34, 502508.CrossRefGoogle Scholar
Kutty, T.R.G.., Kulkarni, R.V., Sengupta, P., Khan, K.B., Bhanumurthy, K., Sengupta, A.K., Panakkal, J.P., Kumar Arun and Kamath, H.S. (2008a) Development of CAP process for fabrication of ThO2-UO2 fuels Part II: Characterization and property evaluation. Journal of Nuclear Materials, 373, 309318.CrossRefGoogle Scholar
Kutty, T.R.G.., Nair, M.R., Sengupta, P., Basak, U., Kumar Arun and Kamath, H.S. (2008b) Characterization of (Th-U)O2 fuel pellets made by impregnation technique. Journal of Nuclear Materials, 374, 919.CrossRefGoogle Scholar
Lee, W.E., Ojovan, M.I. and Stennett, M.C. (2006) Immobilization of radioactive waste in glasses, glass composite. Advances in Applied Ceramics, 105, 3—12.CrossRefGoogle Scholar
Mathur, J.N. (1991) Complexation and thermodynamics of the uranyl ion with phosphate. Polyhedron, 10, 4753.CrossRefGoogle Scholar
Mathur, J.N., Murali, M.S., Natarajan, P.R., Badheka, L.P. and Banerji, A. (1992) Extraction of actinides and fission products by octyl(phenyl)-N,N diisobutylcar-bamoylmethyl-phosphine oxide from nitric acid media. Talanta, 39, 439496.CrossRefGoogle ScholarPubMed
Meece, D.E. and Benninger, J.K. (1993) The coprecipi-tation of Pu and other radionuclides with CaCO3. Geochimica Cosmochimica Acta, 57, 14471458.CrossRefGoogle Scholar
Mishra, R.K., Sengupta, P., Kaushik, C.P., Tyagi, A.K., Kale, G.B. and Raj, K. (2007) Studies on immobil-ization of thorium in barium borosilicate glass. Journal of Nuclear Materials, 360, 143—150.CrossRefGoogle Scholar
Mishra, R.K., Sudarsan, V., Sengupta, P., Vatsa, R.K., Tyagi, A.K., Kaushik, C.P., Das, D. and Raj, K. (2008) Role of sulphate in structural modifications of sodium barium borosilicate glasses developed for nuclear waste immobilization. Journal of American Ceramic Society, 91, 39033907.CrossRefGoogle Scholar
Ojovan, M.I. and Lee, W.E. (2005) An Introduction to Nuclear Waste Immobilization. Elseiver, Netherlands, 315 Pp.Google Scholar
Ojovan, M.I. and Lee, W.E. (2007) New Developments in Glassy Nuclear Wasteforms. Nova Science Pub Inc, Canada, 131 Pp.Google Scholar
Pirlet, Y (2001) Overview of actinides Np, Pu, Am and Tc release from waste glasses: influence of solution composition. Journal of Nuclear Materials, 298, 4754.CrossRefGoogle Scholar
Quade, J. and Cerling, T.E. (1990) Stable isotopic evidence for a pedogenic origin of carbonates in Trench 14 near Yucca Mountain, Nevada. Science, 250, 15491552.CrossRefGoogle ScholarPubMed
Railsback, L.B., Brook, G.A., Chen, J., Kalin, R. and Fleischer, C.J. (1994) Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite. Journal of Sedimentary Research, A64, 147155.Google Scholar
Railsback, L.B. (1999) Patterns in the compositions, properties, and geochemistry of carbonate minerals. Carbonates and Evaporites, 14, 1—20.CrossRefGoogle Scholar
Ramanujam, A., Achuthan, P.V., Dhami, P.S., Gopalakrishnan, V., Kannan, R. and Mathur, J.N. (1995) Extraction chromatographic separation of promethium from high active waste solutions of purex origin. Solvent Extraction and Ion Exchange, 13,301312.CrossRefGoogle Scholar
Reeder, R.J., Nugent, M., Lamble, G.M., Tait, C.D. and Morris, D.E. (2000) Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environmental Science & Technology, 34, 638644.CrossRefGoogle Scholar
Reeder, R.J., Nugent, M., Tait, C.D., Morris, D.E., Heald, S.M., Beck, K.M., Hess, W.P. and Lanzirotti, A. (2001) Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochimica et Cosmochimica Acta, 65, 34913503.CrossRefGoogle Scholar
Russell, A.D., Emerson, S., Nelson, B.K., Erez, J. and Lea, D.W. (1994) Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochimica et Cosmochimica Acta, 58, 671—681.CrossRefGoogle Scholar
Ryan, J.L. and Wheelright, E.J. (1959) The Recovery, Purification, and Concentration of Plutonium by Anion Exchange in Nitric Acid. Report HW-55893, United States Department of the Environment, Office of Environmental Management. Available from: http:// www.osti.gov/scitech/biblio/4232455Google Scholar
Sanwal, J., Kotlia, B.S., Rajendran, C.P., Ahmad, S.M., Rajendran, K. and Sandiford, M. (2013) Climatic variability in Central Indian Himalaya during the last ∼1800 years: evidence from a high resolution speleothem record. Quaternary International, 304, 183192.CrossRefGoogle Scholar
Schulz, W.W. and Horwitz, E.P. (1988) The Truex process and the management of liquid TRU waste. Separation Science and Technology, 23, 11911210.CrossRefGoogle Scholar
Sengupta, P. (2011) Interaction study between nuclear waste glass melt and ceramic melter bellow liner materials. Journal of Nuclear Materials, 411, 181184.CrossRefGoogle Scholar
Sengupta, P. (2012) A review on immobilization of phosphate containing high level nuclear wastes within glass matrix - present status and future challenges. Journal of Hazardous Materials, 235—236, 1728.CrossRefGoogle ScholarPubMed
Sengupta, P., Gawde, P.S., Bhanumurthy, K. and Kale, G.B. (2004) Diffusion reaction between Zircaloy 2 and Thoria. Journal of Nuclear Materials, 325, 180187.CrossRefGoogle Scholar
Sengupta, P., Mittra, J. and Kale, G.B. (2006) Interaction between borosilicate melt and Inconel. Journal of Nuclear Materials, 350, 6673.CrossRefGoogle Scholar
Sengupta, P., Kaushik, C.P., Mishra, R.K. and Kale, G.B. (2007) Micro structural characterization and role of glassy layer developed on process pot wall during nuclear high level waste vitrification process. Journal of the American Ceramic Society, 90, 30853090.CrossRefGoogle Scholar
Sengupta, P., Soudamini, N., Kaushik, C.P., Jagannath, Mishra, R.K., Kale, G.B., Raj, K., Das, D. and Sharma, B.P. (2008) Corrosion of Alloy 690 process pot by sulfate containing high level radioactive waste at feed stage. Journal of Nuclear Materials, 374, 185–91.CrossRefGoogle Scholar
Sengupta, P., Kaushik, C.P., Kale, G.B., Das, D., Raj, K. and Sharma, B.P. (2009) Evaluation of Alloy 690 process pot at the contact with borosilicate melt pool during vitrification of high level nuclear waste. Journal of Nuclear Materials, 392, 379–85.CrossRefGoogle Scholar
Sengupta, P., Fanara, S. and Chakraborty, S. (2011a) Preliminary study on calcium alumino silicate glass as a potential host matrix for radioactive 90Sr — an approach based on natural analogue study. Journal of Hazardous Materials, 190, 229–39.CrossRefGoogle Scholar
Sengupta, P., Rogalla, D., Becker, H.W., Dey, G.K. and Chakraborty, S. (2011b) Development of graded Ni-YSZ composite coating on Alloy 690 by pulsed laser deposition technique to reduce hazardous metallic nuclear waste inventory. Journal of Hazardous Materials, 192,208–21.Google ScholarPubMed
Sengupta, P., Kaushik, C.P. and Dey, G.K. (2013) Immobilization of high-level nuclear wastes: The Indian Scenario. Pp. 2551.in: On a Sustainable Future of the Earth's Natural Resources (M. Ramkumar, editor). Springer-Verlag.CrossRefGoogle Scholar
Sengupta, P., Dey, K.K., Halder, R., Ajithkumar, T.G., Abraham, G., Mishra, R.K., Kaushik, C.P. and Dey, G.K. (2014) Vanadium in borosilicate glasses. Journal of the American Ceramic Society, DOI: 10.1111/jace.13303Google Scholar
Serrano, M.J.G.., Salazar, P.A., Sanz, L.F. A. and Jimenez, Y.J.B.G. (2008) Fracture sealing by mineral precipitation in a Deep Geological Nuclear Waste Repository. Revista de la Sociedad Espanola de Mineralogia, 9, 119—120.Google Scholar
Shanbhag, P.M. and Morse, J.W. (1982) Americium interaction with calcite and aragonite surfaces in seawater. Geochimica et Cosmochimica Acta, 46, 241246.CrossRefGoogle Scholar
Sharma, B.I., Goswami, M., Sengupta, P., Shrikhande, V.K., Kale, G.B. and Kothiyal, G.P. (2004) Study on some thermo physical properties in Li2O—ZnO—SiO2glass ceramics. Materials Letters, 58, 24232428.CrossRefGoogle Scholar
Sposito, G.A. (1986) Distinguishing adsorption from surface precipitation. Pp. 217—228.in: Geochemical Processes at Mineral Surfaces (J.A. Davis and K.H. Hayes, editors). Symposium Series 323. American Chemical Society, Washington, DC.Google Scholar
Stumpf, T. and Fanghänel, T. (2002) A Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) Study of the interaction of trivalent actinides (Cm(III)) with calcite. Journal of Colloid and Interface Science, 249, 119122.CrossRefGoogle Scholar
Sturchio, N.C., Antonio, M.R., Soderholm, L., Sutton, S.R. and Brannon, J.C. (1998) Tetravalent uranium in calcite. Science, 281, 971973.CrossRefGoogle ScholarPubMed
van Cappellen, P., Charlet, L., Stumm, W and Wersin, P. (1993) A surface complexation model of the carbonate mineral-aqueous solution interface. Geochimica et Cosmochimica Acta, 57, 35053518.CrossRefGoogle Scholar
Webster, J.W., Brook, G.A., Railsback, L.B., Cheng, H., Edwards, R.L., Alexander, C. and Reeder, P.P. (2007) Stalagmite evidence from Belize indicating significant droughts at the time of preclassic abandonment, the Maya Hiatus, and the classic Maya collapse. Palaeogeography Palaeoclimate Palaeoecology, 250, 117.CrossRefGoogle Scholar
White, W.B. (1997) Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in Karst terrains. Environmental Geology, 30, 4658.CrossRefGoogle Scholar
Zachara, J.M., Cowan, C.E. and Resch, C.T (1991) Sorption of divalent metals on calcite. Geochimica Cosmochimica Acta, 55, 1549—1562.CrossRefGoogle Scholar
Zavarin, M., Roberts, S.K., Hakem, N., Sawvel A.M. and Kersting, A.B. (2005) Eu(III), Sm(III), Np(V), Pu(V), and Pu(IV) sorption to calcite. Radiochimica Acta, 93, 93102.CrossRefGoogle Scholar