Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T17:01:19.726Z Has data issue: false hasContentIssue false

An X-ray determinative method for the divalent cation ratio in the triphylite-lithiophilite series

Published online by Cambridge University Press:  05 July 2018

Andrié-Mathieu Fransolet
Affiliation:
Institut de Minéralogie, Université de Liège, 9 Place du Vingt-Août, B-4000 Liége, Belgium
Diano Antenucci
Affiliation:
Institut de Minéralogie, Université de Liège, 9 Place du Vingt-Août, B-4000 Liége, Belgium
Jean-Marie Speetjens
Affiliation:
Institut de Minéralogie, Université de Liège, 9 Place du Vingt-Août, B-4000 Liége, Belgium
Pierre Tarte
Affiliation:
Départment de Chimie Générale, Université de Liège, Sart Tilman, B-4000 Liège, Belgium

Abstract

The powder diffractograms of twenty wet chemically analysed samples in the isomorphous triphylite-lithiophilite series and five synthesized members with Fe/(Fe + Mn) = 1, 0.75, 0.50, 0.25, and 0.0, were recorded. Their unit cell dimensions were accurately refined in order to find a reliable method for semi-quantitative determination of the divalent cation content of these minerals. A multivariate best fit analysis based on Kummell’s procedure shows the marked influence of Fe2+ and Mg2+ on the cell dimensions, as well as that of small amounts of Fe3+ substituting for Mn2+, following LiMn2+ → □ Fe3+. The best representation of the correlation between chemical composition and cell parameters is given by the equations:

a = 6.1041 − 0.0245 Fetot − 0.049 Mg2+

b = 10.4511 − Fetot − 0.082 Mg2+

c = 4.7400 − 0.0130(Fe2+ + Mg2+) − 0.025 Fe3+.

No evidence of non-linearity has been found for the variation of the three cell dimensions with the chemical composition. Assuming the absence of appreciable amounts of Mg2+, the following set of equations is proposed: Fetot = 41(6.104–a); Fetot = 35(10.451–b); Fetot = 77(4.740–c) in which the c dimension gives a relatively poor estimate.

Two sets of determinative graphs were constructed, one based on the cell parameter variation, and the other on the 311, 222, and 142 reflection angular positions, v. the total iron content of these minerals. These two methods, whose reliability is examined, can be used for determination of the divalent cation content, provided the samples contain less than about 0.5 wt.% Na2O, 0.5 wt.% CaO, and 3 wt. % Fe2O3, and are homogeneous.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research Associate FNRS, Belgium.

References

Chapman, C. A. (1943) Am. Mineral. 28, 90-8.Google Scholar
Cox, A. A. (1967) A Program for Least-squares Refinement of Unit Cell Dimensions. The City University London, Dept, of Physics, Crystallogr. Lab.Google Scholar
Fersman, A. (1931) Les pegmatites granitiques, leur importance scientiftque et pratique. Acad. Sci. USSR, 3 vol., 675 pp., Univ. de Louvain (French translation 1951).Google Scholar
Finger, L. W., and Rapp, G. R. (1970) Carnegie Inst. Washingtion, Yearb. 68, 290-2.Google Scholar
Fontan, F., Gramont, P. de, Monchoux, P., and Tollon, F. (1970) Sur quelques phosphates des pegmatites lithinifères de l’ Arize (Ariège). C.R. 94e Congres Nat. Soc. Savantes, Pau 1969, Sect. Sci. ii, 131-4.Google Scholar
Fontan, F., Huvelin, P., Orliac, M., and Permingeat, F. (1976) Bull. Soc.fr. Mineral. Cristallogr. 99, 274-86.Google Scholar
Fransolet, A. M. (1974) Notes Serv. geol. Maroc. 35, 137-43.Google Scholar
Fransolet, A. M. (1975) Etude mineralogique et petrologique des phosphates de pegmatites granitiques. These de doctorat inedite. Univ. de Liege, Belgique.Google Scholar
Fransolet, A. M. (1980) Mineral. Mag. 43, 1015-23.CrossRefGoogle Scholar
Geller, S., and Durand, J. L. (1960) Acta Crystallogr. 13, 325-31.CrossRefGoogle Scholar
Ginzbourg, A. I. (1960) Specific Geochemical Features of the Pegmatitic Process. Intern. Geol. Congr., Rep. 21th Sess., Norden, part xvii, sect. 17, 111-21.Google Scholar
Hey, M. H. (1969) Mineral. Mag. 37, 83-9.CrossRefGoogle Scholar
Hey, M. H. (1973) Ibid. 39, 424.Google Scholar
Jesus, A. M. de (1933) Com. Serv. Geol. Portugal. 19, 65210.Google Scholar
Kallio, P., and Alviola, R. (1975). Fortschr. Mineral. 52, Spec. Issue, IMA-papers, 9th Meeting, Berlin 1974, 279-83.Google Scholar
Lahti, S. 1. (1981) Geol. Surv. Finland, Bull. 314, 82.pp.Google Scholar
Mason, B. (1941) Geol. Foren. Fork. 63, 117-75.CrossRefGoogle Scholar
Moore, P. B. (1972) Am. Mineral. 57, 1333-44.Google Scholar
Murdoch, J. (1955) Ibid. 40, 5063.Google Scholar
Murdoch, J. (1958) Ibid. 43, 1148-56.Google Scholar
Palache, C., Berman, H., and Frondel, C. (1951) Dana's System of Mineralogy. 2, 7th edn., John Wiley and Sons, Inc., New York, 1124 pp.Google Scholar
Paques-Ledent, M.-T. (1972) Correlations entre le type structural et le spectre vibrationnel des composes ABXOa. These de doctorat inedite. Univ. de Liege, Belgique.Google Scholar
Quensel, P. (1957) Ark. Mineral. Geol. 2, 9125.Google Scholar
Rickel, C., and Weiss, A. (1978) Z. Naturforsch. 33b, 731-6.CrossRefGoogle Scholar
Schwab, R. B., and Kustner, D. (1977) Neues Jahrb. Mineral. Mh. 205-15.Google Scholar
Thilo, E. (1941) Naturwissenschaften, 29, 239.Google Scholar
Thomssen, R. W., and Anthony, J. W. (1977) Mineral. Rec. 8, 95-7.Google Scholar
Thoreau, J., and SafiannikofF, A. (1957) Bull. Acad. roy. Belgique, Cl. Sci., série 5, 43, 324-7.Google Scholar
Volborth, A. (1954) Ann. Acad. Sci. Fennicae, ser. A, iii, Geol. Geogr. no. 39, 91 pp.Google Scholar
Wilson, A. D. (1960) The Analyst. 85, 823-7.CrossRefGoogle Scholar
Winchell, A. N. (1933). Elements of Optical Mineralogy, 2, 3rd edn., John Wiley and Sons, Inc., New York, 459 pp.Google Scholar
Winchell, A. N. and Winchell, H. (1951) Ibid. 2, 4th edn., 551 pp.Google Scholar